public inbox for gentoo-commits@lists.gentoo.org
 help / color / mirror / Atom feed
From: "Alice Ferrazzi" <alicef@gentoo.org>
To: gentoo-commits@lists.gentoo.org
Subject: [gentoo-commits] proj/linux-patches:4.19 commit in: /
Date: Wed, 22 Feb 2023 14:51:56 +0000 (UTC)	[thread overview]
Message-ID: <1677077454.dca312933d750be394361d9d95540dbd023aefd3.alicef@gentoo> (raw)

commit:     dca312933d750be394361d9d95540dbd023aefd3
Author:     Alice Ferrazzi <alicef <AT> gentoo <DOT> org>
AuthorDate: Wed Feb 22 13:37:22 2023 +0000
Commit:     Alice Ferrazzi <alicef <AT> gentoo <DOT> org>
CommitDate: Wed Feb 22 14:50:54 2023 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=dca31293

Linux patch 4.19.273

Signed-off-by: Alice Ferrazzi <alicef <AT> gentoo.org>

 0000_README               |     4 +
 1272_linux-4.19.273.patch | 35350 ++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 35354 insertions(+)

diff --git a/0000_README b/0000_README
index e471309d..a6113983 100644
--- a/0000_README
+++ b/0000_README
@@ -1131,6 +1131,10 @@ Patch:  1271_linux-4.19.272.patch
 From:   https://www.kernel.org
 Desc:   Linux 4.19.272
 
+Patch:  1272_linux-4.19.273.patch
+From:   https://www.kernel.org
+Desc:   Linux 4.19.273
+
 Patch:  1500_XATTR_USER_PREFIX.patch
 From:   https://bugs.gentoo.org/show_bug.cgi?id=470644
 Desc:   Support for namespace user.pax.* on tmpfs.

diff --git a/1272_linux-4.19.273.patch b/1272_linux-4.19.273.patch
new file mode 100644
index 00000000..40eb2545
--- /dev/null
+++ b/1272_linux-4.19.273.patch
@@ -0,0 +1,35350 @@
+diff --git a/Makefile b/Makefile
+index e3822e492543a..bbc26e110a13d 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,7 +1,7 @@
+ # SPDX-License-Identifier: GPL-2.0
+ VERSION = 4
+ PATCHLEVEL = 19
+-SUBLEVEL = 272
++SUBLEVEL = 273
+ EXTRAVERSION =
+ NAME = "People's Front"
+ 
+diff --git a/arch/arm64/boot/dts/amlogic/meson-axg.dtsi b/arch/arm64/boot/dts/amlogic/meson-axg.dtsi
+index 3c34f14fa5086..90e9cbcc891f2 100644
+--- a/arch/arm64/boot/dts/amlogic/meson-axg.dtsi
++++ b/arch/arm64/boot/dts/amlogic/meson-axg.dtsi
+@@ -167,7 +167,7 @@
+ 			sd_emmc_b: sd@5000 {
+ 				compatible = "amlogic,meson-axg-mmc";
+ 				reg = <0x0 0x5000 0x0 0x800>;
+-				interrupts = <GIC_SPI 217 IRQ_TYPE_EDGE_RISING>;
++				interrupts = <GIC_SPI 217 IRQ_TYPE_LEVEL_HIGH>;
+ 				status = "disabled";
+ 				clocks = <&clkc CLKID_SD_EMMC_B>,
+ 					<&clkc CLKID_SD_EMMC_B_CLK0>,
+@@ -179,7 +179,7 @@
+ 			sd_emmc_c: mmc@7000 {
+ 				compatible = "amlogic,meson-axg-mmc";
+ 				reg = <0x0 0x7000 0x0 0x800>;
+-				interrupts = <GIC_SPI 218 IRQ_TYPE_EDGE_RISING>;
++				interrupts = <GIC_SPI 218 IRQ_TYPE_LEVEL_HIGH>;
+ 				status = "disabled";
+ 				clocks = <&clkc CLKID_SD_EMMC_C>,
+ 					<&clkc CLKID_SD_EMMC_C_CLK0>,
+diff --git a/arch/arm64/boot/dts/amlogic/meson-gx.dtsi b/arch/arm64/boot/dts/amlogic/meson-gx.dtsi
+index 4252119bfd901..a127657526c7f 100644
+--- a/arch/arm64/boot/dts/amlogic/meson-gx.dtsi
++++ b/arch/arm64/boot/dts/amlogic/meson-gx.dtsi
+@@ -470,21 +470,21 @@
+ 			sd_emmc_a: mmc@70000 {
+ 				compatible = "amlogic,meson-gx-mmc", "amlogic,meson-gxbb-mmc";
+ 				reg = <0x0 0x70000 0x0 0x800>;
+-				interrupts = <GIC_SPI 216 IRQ_TYPE_EDGE_RISING>;
++				interrupts = <GIC_SPI 216 IRQ_TYPE_LEVEL_HIGH>;
+ 				status = "disabled";
+ 			};
+ 
+ 			sd_emmc_b: mmc@72000 {
+ 				compatible = "amlogic,meson-gx-mmc", "amlogic,meson-gxbb-mmc";
+ 				reg = <0x0 0x72000 0x0 0x800>;
+-				interrupts = <GIC_SPI 217 IRQ_TYPE_EDGE_RISING>;
++				interrupts = <GIC_SPI 217 IRQ_TYPE_LEVEL_HIGH>;
+ 				status = "disabled";
+ 			};
+ 
+ 			sd_emmc_c: mmc@74000 {
+ 				compatible = "amlogic,meson-gx-mmc", "amlogic,meson-gxbb-mmc";
+ 				reg = <0x0 0x74000 0x0 0x800>;
+-				interrupts = <GIC_SPI 218 IRQ_TYPE_EDGE_RISING>;
++				interrupts = <GIC_SPI 218 IRQ_TYPE_LEVEL_HIGH>;
+ 				status = "disabled";
+ 			};
+ 		};
+diff --git a/arch/parisc/kernel/firmware.c b/arch/parisc/kernel/firmware.c
+index 6d471c00c71af..906b7c8825879 100644
+--- a/arch/parisc/kernel/firmware.c
++++ b/arch/parisc/kernel/firmware.c
+@@ -1197,7 +1197,7 @@ static char __attribute__((aligned(64))) iodc_dbuf[4096];
+  */
+ int pdc_iodc_print(const unsigned char *str, unsigned count)
+ {
+-	unsigned int i;
++	unsigned int i, found = 0;
+ 	unsigned long flags;
+ 
+ 	for (i = 0; i < count;) {
+@@ -1206,6 +1206,7 @@ int pdc_iodc_print(const unsigned char *str, unsigned count)
+ 			iodc_dbuf[i+0] = '\r';
+ 			iodc_dbuf[i+1] = '\n';
+ 			i += 2;
++			found = 1;
+ 			goto print;
+ 		default:
+ 			iodc_dbuf[i] = str[i];
+@@ -1222,7 +1223,7 @@ print:
+                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
+         spin_unlock_irqrestore(&pdc_lock, flags);
+ 
+-	return i;
++	return i - found;
+ }
+ 
+ #if !defined(BOOTLOADER)
+diff --git a/arch/parisc/kernel/ptrace.c b/arch/parisc/kernel/ptrace.c
+index de2998cb189e8..bc94acdbf478b 100644
+--- a/arch/parisc/kernel/ptrace.c
++++ b/arch/parisc/kernel/ptrace.c
+@@ -128,6 +128,12 @@ long arch_ptrace(struct task_struct *child, long request,
+ 	unsigned long tmp;
+ 	long ret = -EIO;
+ 
++	unsigned long user_regs_struct_size = sizeof(struct user_regs_struct);
++#ifdef CONFIG_64BIT
++	if (is_compat_task())
++		user_regs_struct_size /= 2;
++#endif
++
+ 	switch (request) {
+ 
+ 	/* Read the word at location addr in the USER area.  For ptraced
+@@ -183,14 +189,14 @@ long arch_ptrace(struct task_struct *child, long request,
+ 		return copy_regset_to_user(child,
+ 					   task_user_regset_view(current),
+ 					   REGSET_GENERAL,
+-					   0, sizeof(struct user_regs_struct),
++					   0, user_regs_struct_size,
+ 					   datap);
+ 
+ 	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
+ 		return copy_regset_from_user(child,
+ 					     task_user_regset_view(current),
+ 					     REGSET_GENERAL,
+-					     0, sizeof(struct user_regs_struct),
++					     0, user_regs_struct_size,
+ 					     datap);
+ 
+ 	case PTRACE_GETFPREGS:	/* Get the child FPU state. */
+@@ -304,6 +310,11 @@ long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
+ 			}
+ 		}
+ 		break;
++	case PTRACE_GETREGS:
++	case PTRACE_SETREGS:
++	case PTRACE_GETFPREGS:
++	case PTRACE_SETFPREGS:
++		return arch_ptrace(child, request, addr, data);
+ 
+ 	default:
+ 		ret = compat_ptrace_request(child, request, addr, data);
+diff --git a/arch/riscv/Makefile b/arch/riscv/Makefile
+index e6d09ad417e5b..a374e255336b3 100644
+--- a/arch/riscv/Makefile
++++ b/arch/riscv/Makefile
+@@ -72,6 +72,9 @@ ifeq ($(CONFIG_MODULE_SECTIONS),y)
+ 	KBUILD_LDFLAGS_MODULE += -T $(srctree)/arch/riscv/kernel/module.lds
+ endif
+ 
++# Avoid generating .eh_frame sections.
++KBUILD_CFLAGS += -fno-asynchronous-unwind-tables -fno-unwind-tables
++
+ KBUILD_CFLAGS_MODULE += $(call cc-option,-mno-relax)
+ KBUILD_AFLAGS_MODULE += $(call as-option,-Wa$(comma)-mno-relax)
+ 
+diff --git a/arch/riscv/mm/cacheflush.c b/arch/riscv/mm/cacheflush.c
+index 498c0a0814fe3..62f8be2fdbb82 100644
+--- a/arch/riscv/mm/cacheflush.c
++++ b/arch/riscv/mm/cacheflush.c
+@@ -18,6 +18,8 @@ void flush_icache_pte(pte_t pte)
+ {
+ 	struct page *page = pte_page(pte);
+ 
+-	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
++	if (!test_bit(PG_dcache_clean, &page->flags)) {
+ 		flush_icache_all();
++		set_bit(PG_dcache_clean, &page->flags);
++	}
+ }
+diff --git a/arch/x86/kernel/fpu/init.c b/arch/x86/kernel/fpu/init.c
+index a3a570df6be1c..9692ccc583bb3 100644
+--- a/arch/x86/kernel/fpu/init.c
++++ b/arch/x86/kernel/fpu/init.c
+@@ -138,6 +138,9 @@ static void __init fpu__init_system_generic(void)
+ unsigned int fpu_kernel_xstate_size;
+ EXPORT_SYMBOL_GPL(fpu_kernel_xstate_size);
+ 
++/* Get alignment of the TYPE. */
++#define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test)
++
+ /*
+  * Enforce that 'MEMBER' is the last field of 'TYPE'.
+  *
+@@ -145,8 +148,8 @@ EXPORT_SYMBOL_GPL(fpu_kernel_xstate_size);
+  * because that's how C aligns structs.
+  */
+ #define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
+-	BUILD_BUG_ON(sizeof(TYPE) !=         \
+-		     ALIGN(offsetofend(TYPE, MEMBER), _Alignof(TYPE)))
++	BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \
++					   TYPE_ALIGN(TYPE)))
+ 
+ /*
+  * We append the 'struct fpu' to the task_struct:
+diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile
+index dc4f2fdf5e579..13fd54de5449b 100644
+--- a/arch/x86/kvm/Makefile
++++ b/arch/x86/kvm/Makefile
+@@ -16,7 +16,7 @@ kvm-y			+= x86.o mmu.o emulate.o i8259.o irq.o lapic.o \
+ 			   i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \
+ 			   hyperv.o page_track.o debugfs.o
+ 
+-kvm-intel-y		+= vmx.o pmu_intel.o
++kvm-intel-y		+= vmx/vmx.o vmx/pmu_intel.o
+ kvm-amd-y		+= svm.o pmu_amd.o
+ 
+ obj-$(CONFIG_KVM)	+= kvm.o
+diff --git a/arch/x86/kvm/pmu_intel.c b/arch/x86/kvm/pmu_intel.c
+deleted file mode 100644
+index 611f9e60f8154..0000000000000
+--- a/arch/x86/kvm/pmu_intel.c
++++ /dev/null
+@@ -1,374 +0,0 @@
+-/*
+- * KVM PMU support for Intel CPUs
+- *
+- * Copyright 2011 Red Hat, Inc. and/or its affiliates.
+- *
+- * Authors:
+- *   Avi Kivity   <avi@redhat.com>
+- *   Gleb Natapov <gleb@redhat.com>
+- *
+- * This work is licensed under the terms of the GNU GPL, version 2.  See
+- * the COPYING file in the top-level directory.
+- *
+- */
+-#include <linux/types.h>
+-#include <linux/kvm_host.h>
+-#include <linux/perf_event.h>
+-#include <asm/perf_event.h>
+-#include "x86.h"
+-#include "cpuid.h"
+-#include "lapic.h"
+-#include "pmu.h"
+-
+-static struct kvm_event_hw_type_mapping intel_arch_events[] = {
+-	/* Index must match CPUID 0x0A.EBX bit vector */
+-	[0] = { 0x3c, 0x00, PERF_COUNT_HW_CPU_CYCLES },
+-	[1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS },
+-	[2] = { 0x3c, 0x01, PERF_COUNT_HW_BUS_CYCLES  },
+-	[3] = { 0x2e, 0x4f, PERF_COUNT_HW_CACHE_REFERENCES },
+-	[4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES },
+-	[5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
+-	[6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES },
+-	[7] = { 0x00, 0x03, PERF_COUNT_HW_REF_CPU_CYCLES },
+-};
+-
+-/* mapping between fixed pmc index and intel_arch_events array */
+-static int fixed_pmc_events[] = {1, 0, 7};
+-
+-static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
+-{
+-	int i;
+-
+-	for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
+-		u8 new_ctrl = fixed_ctrl_field(data, i);
+-		u8 old_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, i);
+-		struct kvm_pmc *pmc;
+-
+-		pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i);
+-
+-		if (old_ctrl == new_ctrl)
+-			continue;
+-
+-		reprogram_fixed_counter(pmc, new_ctrl, i);
+-	}
+-
+-	pmu->fixed_ctr_ctrl = data;
+-}
+-
+-/* function is called when global control register has been updated. */
+-static void global_ctrl_changed(struct kvm_pmu *pmu, u64 data)
+-{
+-	int bit;
+-	u64 diff = pmu->global_ctrl ^ data;
+-
+-	pmu->global_ctrl = data;
+-
+-	for_each_set_bit(bit, (unsigned long *)&diff, X86_PMC_IDX_MAX)
+-		reprogram_counter(pmu, bit);
+-}
+-
+-static unsigned intel_find_arch_event(struct kvm_pmu *pmu,
+-				      u8 event_select,
+-				      u8 unit_mask)
+-{
+-	int i;
+-
+-	for (i = 0; i < ARRAY_SIZE(intel_arch_events); i++)
+-		if (intel_arch_events[i].eventsel == event_select
+-		    && intel_arch_events[i].unit_mask == unit_mask
+-		    && (pmu->available_event_types & (1 << i)))
+-			break;
+-
+-	if (i == ARRAY_SIZE(intel_arch_events))
+-		return PERF_COUNT_HW_MAX;
+-
+-	return intel_arch_events[i].event_type;
+-}
+-
+-static unsigned intel_find_fixed_event(int idx)
+-{
+-	u32 event;
+-	size_t size = ARRAY_SIZE(fixed_pmc_events);
+-
+-	if (idx >= size)
+-		return PERF_COUNT_HW_MAX;
+-
+-	event = fixed_pmc_events[array_index_nospec(idx, size)];
+-	return intel_arch_events[event].event_type;
+-}
+-
+-/* check if a PMC is enabled by comparing it with globl_ctrl bits. */
+-static bool intel_pmc_is_enabled(struct kvm_pmc *pmc)
+-{
+-	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
+-
+-	return test_bit(pmc->idx, (unsigned long *)&pmu->global_ctrl);
+-}
+-
+-static struct kvm_pmc *intel_pmc_idx_to_pmc(struct kvm_pmu *pmu, int pmc_idx)
+-{
+-	if (pmc_idx < INTEL_PMC_IDX_FIXED)
+-		return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + pmc_idx,
+-				  MSR_P6_EVNTSEL0);
+-	else {
+-		u32 idx = pmc_idx - INTEL_PMC_IDX_FIXED;
+-
+-		return get_fixed_pmc(pmu, idx + MSR_CORE_PERF_FIXED_CTR0);
+-	}
+-}
+-
+-/* returns 0 if idx's corresponding MSR exists; otherwise returns 1. */
+-static int intel_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	bool fixed = idx & (1u << 30);
+-
+-	idx &= ~(3u << 30);
+-
+-	return (!fixed && idx >= pmu->nr_arch_gp_counters) ||
+-		(fixed && idx >= pmu->nr_arch_fixed_counters);
+-}
+-
+-static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu,
+-					    unsigned idx, u64 *mask)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	bool fixed = idx & (1u << 30);
+-	struct kvm_pmc *counters;
+-	unsigned int num_counters;
+-
+-	idx &= ~(3u << 30);
+-	if (fixed) {
+-		counters = pmu->fixed_counters;
+-		num_counters = pmu->nr_arch_fixed_counters;
+-	} else {
+-		counters = pmu->gp_counters;
+-		num_counters = pmu->nr_arch_gp_counters;
+-	}
+-	if (idx >= num_counters)
+-		return NULL;
+-	*mask &= pmu->counter_bitmask[fixed ? KVM_PMC_FIXED : KVM_PMC_GP];
+-	return &counters[array_index_nospec(idx, num_counters)];
+-}
+-
+-static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	int ret;
+-
+-	switch (msr) {
+-	case MSR_CORE_PERF_FIXED_CTR_CTRL:
+-	case MSR_CORE_PERF_GLOBAL_STATUS:
+-	case MSR_CORE_PERF_GLOBAL_CTRL:
+-	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+-		ret = pmu->version > 1;
+-		break;
+-	default:
+-		ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) ||
+-			get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) ||
+-			get_fixed_pmc(pmu, msr);
+-		break;
+-	}
+-
+-	return ret;
+-}
+-
+-static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	struct kvm_pmc *pmc;
+-
+-	switch (msr) {
+-	case MSR_CORE_PERF_FIXED_CTR_CTRL:
+-		*data = pmu->fixed_ctr_ctrl;
+-		return 0;
+-	case MSR_CORE_PERF_GLOBAL_STATUS:
+-		*data = pmu->global_status;
+-		return 0;
+-	case MSR_CORE_PERF_GLOBAL_CTRL:
+-		*data = pmu->global_ctrl;
+-		return 0;
+-	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+-		*data = pmu->global_ovf_ctrl;
+-		return 0;
+-	default:
+-		if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0))) {
+-			u64 val = pmc_read_counter(pmc);
+-			*data = val & pmu->counter_bitmask[KVM_PMC_GP];
+-			return 0;
+-		} else if ((pmc = get_fixed_pmc(pmu, msr))) {
+-			u64 val = pmc_read_counter(pmc);
+-			*data = val & pmu->counter_bitmask[KVM_PMC_FIXED];
+-			return 0;
+-		} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
+-			*data = pmc->eventsel;
+-			return 0;
+-		}
+-	}
+-
+-	return 1;
+-}
+-
+-static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	struct kvm_pmc *pmc;
+-	u32 msr = msr_info->index;
+-	u64 data = msr_info->data;
+-
+-	switch (msr) {
+-	case MSR_CORE_PERF_FIXED_CTR_CTRL:
+-		if (pmu->fixed_ctr_ctrl == data)
+-			return 0;
+-		if (!(data & 0xfffffffffffff444ull)) {
+-			reprogram_fixed_counters(pmu, data);
+-			return 0;
+-		}
+-		break;
+-	case MSR_CORE_PERF_GLOBAL_STATUS:
+-		if (msr_info->host_initiated) {
+-			pmu->global_status = data;
+-			return 0;
+-		}
+-		break; /* RO MSR */
+-	case MSR_CORE_PERF_GLOBAL_CTRL:
+-		if (pmu->global_ctrl == data)
+-			return 0;
+-		if (!(data & pmu->global_ctrl_mask)) {
+-			global_ctrl_changed(pmu, data);
+-			return 0;
+-		}
+-		break;
+-	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+-		if (!(data & (pmu->global_ctrl_mask & ~(3ull<<62)))) {
+-			if (!msr_info->host_initiated)
+-				pmu->global_status &= ~data;
+-			pmu->global_ovf_ctrl = data;
+-			return 0;
+-		}
+-		break;
+-	default:
+-		if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0))) {
+-			if (msr_info->host_initiated)
+-				pmc->counter = data;
+-			else
+-				pmc->counter = (s32)data;
+-			return 0;
+-		} else if ((pmc = get_fixed_pmc(pmu, msr))) {
+-			pmc->counter = data;
+-			return 0;
+-		} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
+-			if (data == pmc->eventsel)
+-				return 0;
+-			if (!(data & pmu->reserved_bits)) {
+-				reprogram_gp_counter(pmc, data);
+-				return 0;
+-			}
+-		}
+-	}
+-
+-	return 1;
+-}
+-
+-static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	struct kvm_cpuid_entry2 *entry;
+-	union cpuid10_eax eax;
+-	union cpuid10_edx edx;
+-
+-	pmu->nr_arch_gp_counters = 0;
+-	pmu->nr_arch_fixed_counters = 0;
+-	pmu->counter_bitmask[KVM_PMC_GP] = 0;
+-	pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
+-	pmu->version = 0;
+-	pmu->reserved_bits = 0xffffffff00200000ull;
+-
+-	entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
+-	if (!entry)
+-		return;
+-	eax.full = entry->eax;
+-	edx.full = entry->edx;
+-
+-	pmu->version = eax.split.version_id;
+-	if (!pmu->version)
+-		return;
+-
+-	pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
+-					INTEL_PMC_MAX_GENERIC);
+-	pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
+-	pmu->available_event_types = ~entry->ebx &
+-					((1ull << eax.split.mask_length) - 1);
+-
+-	if (pmu->version == 1) {
+-		pmu->nr_arch_fixed_counters = 0;
+-	} else {
+-		pmu->nr_arch_fixed_counters =
+-			min_t(int, edx.split.num_counters_fixed,
+-				INTEL_PMC_MAX_FIXED);
+-		pmu->counter_bitmask[KVM_PMC_FIXED] =
+-			((u64)1 << edx.split.bit_width_fixed) - 1;
+-	}
+-
+-	pmu->global_ctrl = ((1ull << pmu->nr_arch_gp_counters) - 1) |
+-		(((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED);
+-	pmu->global_ctrl_mask = ~pmu->global_ctrl;
+-
+-	entry = kvm_find_cpuid_entry(vcpu, 7, 0);
+-	if (entry &&
+-	    (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
+-	    (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM)))
+-		pmu->reserved_bits ^= HSW_IN_TX|HSW_IN_TX_CHECKPOINTED;
+-}
+-
+-static void intel_pmu_init(struct kvm_vcpu *vcpu)
+-{
+-	int i;
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-
+-	for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) {
+-		pmu->gp_counters[i].type = KVM_PMC_GP;
+-		pmu->gp_counters[i].vcpu = vcpu;
+-		pmu->gp_counters[i].idx = i;
+-	}
+-
+-	for (i = 0; i < INTEL_PMC_MAX_FIXED; i++) {
+-		pmu->fixed_counters[i].type = KVM_PMC_FIXED;
+-		pmu->fixed_counters[i].vcpu = vcpu;
+-		pmu->fixed_counters[i].idx = i + INTEL_PMC_IDX_FIXED;
+-	}
+-}
+-
+-static void intel_pmu_reset(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+-	int i;
+-
+-	for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) {
+-		struct kvm_pmc *pmc = &pmu->gp_counters[i];
+-
+-		pmc_stop_counter(pmc);
+-		pmc->counter = pmc->eventsel = 0;
+-	}
+-
+-	for (i = 0; i < INTEL_PMC_MAX_FIXED; i++)
+-		pmc_stop_counter(&pmu->fixed_counters[i]);
+-
+-	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status =
+-		pmu->global_ovf_ctrl = 0;
+-}
+-
+-struct kvm_pmu_ops intel_pmu_ops = {
+-	.find_arch_event = intel_find_arch_event,
+-	.find_fixed_event = intel_find_fixed_event,
+-	.pmc_is_enabled = intel_pmc_is_enabled,
+-	.pmc_idx_to_pmc = intel_pmc_idx_to_pmc,
+-	.msr_idx_to_pmc = intel_msr_idx_to_pmc,
+-	.is_valid_msr_idx = intel_is_valid_msr_idx,
+-	.is_valid_msr = intel_is_valid_msr,
+-	.get_msr = intel_pmu_get_msr,
+-	.set_msr = intel_pmu_set_msr,
+-	.refresh = intel_pmu_refresh,
+-	.init = intel_pmu_init,
+-	.reset = intel_pmu_reset,
+-};
+diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
+deleted file mode 100644
+index 9bb696d7300c0..0000000000000
+--- a/arch/x86/kvm/vmx.c
++++ /dev/null
+@@ -1,14757 +0,0 @@
+-/*
+- * Kernel-based Virtual Machine driver for Linux
+- *
+- * This module enables machines with Intel VT-x extensions to run virtual
+- * machines without emulation or binary translation.
+- *
+- * Copyright (C) 2006 Qumranet, Inc.
+- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+- *
+- * Authors:
+- *   Avi Kivity   <avi@qumranet.com>
+- *   Yaniv Kamay  <yaniv@qumranet.com>
+- *
+- * This work is licensed under the terms of the GNU GPL, version 2.  See
+- * the COPYING file in the top-level directory.
+- *
+- */
+-
+-#include "irq.h"
+-#include "mmu.h"
+-#include "cpuid.h"
+-#include "lapic.h"
+-
+-#include <linux/kvm_host.h>
+-#include <linux/module.h>
+-#include <linux/kernel.h>
+-#include <linux/mm.h>
+-#include <linux/highmem.h>
+-#include <linux/sched.h>
+-#include <linux/sched/smt.h>
+-#include <linux/moduleparam.h>
+-#include <linux/mod_devicetable.h>
+-#include <linux/trace_events.h>
+-#include <linux/slab.h>
+-#include <linux/tboot.h>
+-#include <linux/hrtimer.h>
+-#include <linux/frame.h>
+-#include <linux/nospec.h>
+-#include "kvm_cache_regs.h"
+-#include "x86.h"
+-
+-#include <asm/asm.h>
+-#include <asm/cpu.h>
+-#include <asm/cpu_device_id.h>
+-#include <asm/io.h>
+-#include <asm/desc.h>
+-#include <asm/vmx.h>
+-#include <asm/virtext.h>
+-#include <asm/mce.h>
+-#include <asm/fpu/internal.h>
+-#include <asm/perf_event.h>
+-#include <asm/debugreg.h>
+-#include <asm/kexec.h>
+-#include <asm/apic.h>
+-#include <asm/irq_remapping.h>
+-#include <asm/mmu_context.h>
+-#include <asm/spec-ctrl.h>
+-#include <asm/mshyperv.h>
+-
+-#include "trace.h"
+-#include "pmu.h"
+-#include "vmx_evmcs.h"
+-
+-#define __ex(x) __kvm_handle_fault_on_reboot(x)
+-#define __ex_clear(x, reg) \
+-	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
+-
+-MODULE_AUTHOR("Qumranet");
+-MODULE_LICENSE("GPL");
+-
+-static const struct x86_cpu_id vmx_cpu_id[] = {
+-	X86_FEATURE_MATCH(X86_FEATURE_VMX),
+-	{}
+-};
+-MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+-
+-static bool __read_mostly enable_vpid = 1;
+-module_param_named(vpid, enable_vpid, bool, 0444);
+-
+-static bool __read_mostly enable_vnmi = 1;
+-module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
+-
+-static bool __read_mostly flexpriority_enabled = 1;
+-module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+-
+-static bool __read_mostly enable_ept = 1;
+-module_param_named(ept, enable_ept, bool, S_IRUGO);
+-
+-static bool __read_mostly enable_unrestricted_guest = 1;
+-module_param_named(unrestricted_guest,
+-			enable_unrestricted_guest, bool, S_IRUGO);
+-
+-static bool __read_mostly enable_ept_ad_bits = 1;
+-module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+-
+-static bool __read_mostly emulate_invalid_guest_state = true;
+-module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+-
+-static bool __read_mostly fasteoi = 1;
+-module_param(fasteoi, bool, S_IRUGO);
+-
+-static bool __read_mostly enable_apicv = 1;
+-module_param(enable_apicv, bool, S_IRUGO);
+-
+-static bool __read_mostly enable_shadow_vmcs = 1;
+-module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+-/*
+- * If nested=1, nested virtualization is supported, i.e., guests may use
+- * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+- * use VMX instructions.
+- */
+-static bool __read_mostly nested = 0;
+-module_param(nested, bool, S_IRUGO);
+-
+-static u64 __read_mostly host_xss;
+-
+-static bool __read_mostly enable_pml = 1;
+-module_param_named(pml, enable_pml, bool, S_IRUGO);
+-
+-#define MSR_TYPE_R	1
+-#define MSR_TYPE_W	2
+-#define MSR_TYPE_RW	3
+-
+-#define MSR_BITMAP_MODE_X2APIC		1
+-#define MSR_BITMAP_MODE_X2APIC_APICV	2
+-
+-#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
+-
+-/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
+-static int __read_mostly cpu_preemption_timer_multi;
+-static bool __read_mostly enable_preemption_timer = 1;
+-#ifdef CONFIG_X86_64
+-module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
+-#endif
+-
+-#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
+-#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
+-#define KVM_VM_CR0_ALWAYS_ON				\
+-	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
+-	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
+-#define KVM_CR4_GUEST_OWNED_BITS				      \
+-	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
+-	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
+-
+-#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
+-#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+-#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+-
+-#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+-
+-#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+-
+-/*
+- * Hyper-V requires all of these, so mark them as supported even though
+- * they are just treated the same as all-context.
+- */
+-#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
+-	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
+-	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
+-	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
+-	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
+-
+-/*
+- * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+- * ple_gap:    upper bound on the amount of time between two successive
+- *             executions of PAUSE in a loop. Also indicate if ple enabled.
+- *             According to test, this time is usually smaller than 128 cycles.
+- * ple_window: upper bound on the amount of time a guest is allowed to execute
+- *             in a PAUSE loop. Tests indicate that most spinlocks are held for
+- *             less than 2^12 cycles
+- * Time is measured based on a counter that runs at the same rate as the TSC,
+- * refer SDM volume 3b section 21.6.13 & 22.1.3.
+- */
+-static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
+-module_param(ple_gap, uint, 0444);
+-
+-static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+-module_param(ple_window, uint, 0444);
+-
+-/* Default doubles per-vcpu window every exit. */
+-static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
+-module_param(ple_window_grow, uint, 0444);
+-
+-/* Default resets per-vcpu window every exit to ple_window. */
+-static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
+-module_param(ple_window_shrink, uint, 0444);
+-
+-/* Default is to compute the maximum so we can never overflow. */
+-static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+-module_param(ple_window_max, uint, 0444);
+-
+-extern const ulong vmx_return;
+-
+-static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
+-static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
+-static DEFINE_MUTEX(vmx_l1d_flush_mutex);
+-
+-/* Storage for pre module init parameter parsing */
+-static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
+-
+-static const struct {
+-	const char *option;
+-	bool for_parse;
+-} vmentry_l1d_param[] = {
+-	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
+-	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
+-	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
+-	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
+-	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
+-	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
+-};
+-
+-#define L1D_CACHE_ORDER 4
+-static void *vmx_l1d_flush_pages;
+-
+-/* Control for disabling CPU Fill buffer clear */
+-static bool __read_mostly vmx_fb_clear_ctrl_available;
+-
+-static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
+-{
+-	struct page *page;
+-	unsigned int i;
+-
+-	if (!enable_ept) {
+-		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
+-		return 0;
+-	}
+-
+-	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
+-		u64 msr;
+-
+-		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+-		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
+-			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+-			return 0;
+-		}
+-	}
+-
+-	/* If set to auto use the default l1tf mitigation method */
+-	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
+-		switch (l1tf_mitigation) {
+-		case L1TF_MITIGATION_OFF:
+-			l1tf = VMENTER_L1D_FLUSH_NEVER;
+-			break;
+-		case L1TF_MITIGATION_FLUSH_NOWARN:
+-		case L1TF_MITIGATION_FLUSH:
+-		case L1TF_MITIGATION_FLUSH_NOSMT:
+-			l1tf = VMENTER_L1D_FLUSH_COND;
+-			break;
+-		case L1TF_MITIGATION_FULL:
+-		case L1TF_MITIGATION_FULL_FORCE:
+-			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+-			break;
+-		}
+-	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
+-		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+-	}
+-
+-	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
+-	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+-		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
+-		if (!page)
+-			return -ENOMEM;
+-		vmx_l1d_flush_pages = page_address(page);
+-
+-		/*
+-		 * Initialize each page with a different pattern in
+-		 * order to protect against KSM in the nested
+-		 * virtualization case.
+-		 */
+-		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
+-			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
+-			       PAGE_SIZE);
+-		}
+-	}
+-
+-	l1tf_vmx_mitigation = l1tf;
+-
+-	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
+-		static_branch_enable(&vmx_l1d_should_flush);
+-	else
+-		static_branch_disable(&vmx_l1d_should_flush);
+-
+-	if (l1tf == VMENTER_L1D_FLUSH_COND)
+-		static_branch_enable(&vmx_l1d_flush_cond);
+-	else
+-		static_branch_disable(&vmx_l1d_flush_cond);
+-	return 0;
+-}
+-
+-static int vmentry_l1d_flush_parse(const char *s)
+-{
+-	unsigned int i;
+-
+-	if (s) {
+-		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
+-			if (vmentry_l1d_param[i].for_parse &&
+-			    sysfs_streq(s, vmentry_l1d_param[i].option))
+-				return i;
+-		}
+-	}
+-	return -EINVAL;
+-}
+-
+-static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
+-{
+-	int l1tf, ret;
+-
+-	l1tf = vmentry_l1d_flush_parse(s);
+-	if (l1tf < 0)
+-		return l1tf;
+-
+-	if (!boot_cpu_has(X86_BUG_L1TF))
+-		return 0;
+-
+-	/*
+-	 * Has vmx_init() run already? If not then this is the pre init
+-	 * parameter parsing. In that case just store the value and let
+-	 * vmx_init() do the proper setup after enable_ept has been
+-	 * established.
+-	 */
+-	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
+-		vmentry_l1d_flush_param = l1tf;
+-		return 0;
+-	}
+-
+-	mutex_lock(&vmx_l1d_flush_mutex);
+-	ret = vmx_setup_l1d_flush(l1tf);
+-	mutex_unlock(&vmx_l1d_flush_mutex);
+-	return ret;
+-}
+-
+-static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
+-{
+-	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
+-		return sprintf(s, "???\n");
+-
+-	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
+-}
+-
+-static const struct kernel_param_ops vmentry_l1d_flush_ops = {
+-	.set = vmentry_l1d_flush_set,
+-	.get = vmentry_l1d_flush_get,
+-};
+-module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
+-
+-enum ept_pointers_status {
+-	EPT_POINTERS_CHECK = 0,
+-	EPT_POINTERS_MATCH = 1,
+-	EPT_POINTERS_MISMATCH = 2
+-};
+-
+-struct kvm_vmx {
+-	struct kvm kvm;
+-
+-	unsigned int tss_addr;
+-	bool ept_identity_pagetable_done;
+-	gpa_t ept_identity_map_addr;
+-
+-	enum ept_pointers_status ept_pointers_match;
+-	spinlock_t ept_pointer_lock;
+-};
+-
+-#define NR_AUTOLOAD_MSRS 8
+-
+-struct vmcs_hdr {
+-	u32 revision_id:31;
+-	u32 shadow_vmcs:1;
+-};
+-
+-struct vmcs {
+-	struct vmcs_hdr hdr;
+-	u32 abort;
+-	char data[0];
+-};
+-
+-/*
+- * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
+- * and whose values change infrequently, but are not constant.  I.e. this is
+- * used as a write-through cache of the corresponding VMCS fields.
+- */
+-struct vmcs_host_state {
+-	unsigned long cr3;	/* May not match real cr3 */
+-	unsigned long cr4;	/* May not match real cr4 */
+-	unsigned long gs_base;
+-	unsigned long fs_base;
+-
+-	u16           fs_sel, gs_sel, ldt_sel;
+-#ifdef CONFIG_X86_64
+-	u16           ds_sel, es_sel;
+-#endif
+-};
+-
+-/*
+- * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
+- * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
+- * loaded on this CPU (so we can clear them if the CPU goes down).
+- */
+-struct loaded_vmcs {
+-	struct vmcs *vmcs;
+-	struct vmcs *shadow_vmcs;
+-	int cpu;
+-	bool launched;
+-	bool nmi_known_unmasked;
+-	bool hv_timer_armed;
+-	/* Support for vnmi-less CPUs */
+-	int soft_vnmi_blocked;
+-	ktime_t entry_time;
+-	s64 vnmi_blocked_time;
+-	unsigned long *msr_bitmap;
+-	struct list_head loaded_vmcss_on_cpu_link;
+-	struct vmcs_host_state host_state;
+-};
+-
+-struct shared_msr_entry {
+-	unsigned index;
+-	u64 data;
+-	u64 mask;
+-};
+-
+-/*
+- * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
+- * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
+- * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
+- * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
+- * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
+- * More than one of these structures may exist, if L1 runs multiple L2 guests.
+- * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
+- * underlying hardware which will be used to run L2.
+- * This structure is packed to ensure that its layout is identical across
+- * machines (necessary for live migration).
+- *
+- * IMPORTANT: Changing the layout of existing fields in this structure
+- * will break save/restore compatibility with older kvm releases. When
+- * adding new fields, either use space in the reserved padding* arrays
+- * or add the new fields to the end of the structure.
+- */
+-typedef u64 natural_width;
+-struct __packed vmcs12 {
+-	/* According to the Intel spec, a VMCS region must start with the
+-	 * following two fields. Then follow implementation-specific data.
+-	 */
+-	struct vmcs_hdr hdr;
+-	u32 abort;
+-
+-	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+-	u32 padding[7]; /* room for future expansion */
+-
+-	u64 io_bitmap_a;
+-	u64 io_bitmap_b;
+-	u64 msr_bitmap;
+-	u64 vm_exit_msr_store_addr;
+-	u64 vm_exit_msr_load_addr;
+-	u64 vm_entry_msr_load_addr;
+-	u64 tsc_offset;
+-	u64 virtual_apic_page_addr;
+-	u64 apic_access_addr;
+-	u64 posted_intr_desc_addr;
+-	u64 ept_pointer;
+-	u64 eoi_exit_bitmap0;
+-	u64 eoi_exit_bitmap1;
+-	u64 eoi_exit_bitmap2;
+-	u64 eoi_exit_bitmap3;
+-	u64 xss_exit_bitmap;
+-	u64 guest_physical_address;
+-	u64 vmcs_link_pointer;
+-	u64 guest_ia32_debugctl;
+-	u64 guest_ia32_pat;
+-	u64 guest_ia32_efer;
+-	u64 guest_ia32_perf_global_ctrl;
+-	u64 guest_pdptr0;
+-	u64 guest_pdptr1;
+-	u64 guest_pdptr2;
+-	u64 guest_pdptr3;
+-	u64 guest_bndcfgs;
+-	u64 host_ia32_pat;
+-	u64 host_ia32_efer;
+-	u64 host_ia32_perf_global_ctrl;
+-	u64 vmread_bitmap;
+-	u64 vmwrite_bitmap;
+-	u64 vm_function_control;
+-	u64 eptp_list_address;
+-	u64 pml_address;
+-	u64 padding64[3]; /* room for future expansion */
+-	/*
+-	 * To allow migration of L1 (complete with its L2 guests) between
+-	 * machines of different natural widths (32 or 64 bit), we cannot have
+-	 * unsigned long fields with no explict size. We use u64 (aliased
+-	 * natural_width) instead. Luckily, x86 is little-endian.
+-	 */
+-	natural_width cr0_guest_host_mask;
+-	natural_width cr4_guest_host_mask;
+-	natural_width cr0_read_shadow;
+-	natural_width cr4_read_shadow;
+-	natural_width cr3_target_value0;
+-	natural_width cr3_target_value1;
+-	natural_width cr3_target_value2;
+-	natural_width cr3_target_value3;
+-	natural_width exit_qualification;
+-	natural_width guest_linear_address;
+-	natural_width guest_cr0;
+-	natural_width guest_cr3;
+-	natural_width guest_cr4;
+-	natural_width guest_es_base;
+-	natural_width guest_cs_base;
+-	natural_width guest_ss_base;
+-	natural_width guest_ds_base;
+-	natural_width guest_fs_base;
+-	natural_width guest_gs_base;
+-	natural_width guest_ldtr_base;
+-	natural_width guest_tr_base;
+-	natural_width guest_gdtr_base;
+-	natural_width guest_idtr_base;
+-	natural_width guest_dr7;
+-	natural_width guest_rsp;
+-	natural_width guest_rip;
+-	natural_width guest_rflags;
+-	natural_width guest_pending_dbg_exceptions;
+-	natural_width guest_sysenter_esp;
+-	natural_width guest_sysenter_eip;
+-	natural_width host_cr0;
+-	natural_width host_cr3;
+-	natural_width host_cr4;
+-	natural_width host_fs_base;
+-	natural_width host_gs_base;
+-	natural_width host_tr_base;
+-	natural_width host_gdtr_base;
+-	natural_width host_idtr_base;
+-	natural_width host_ia32_sysenter_esp;
+-	natural_width host_ia32_sysenter_eip;
+-	natural_width host_rsp;
+-	natural_width host_rip;
+-	natural_width paddingl[8]; /* room for future expansion */
+-	u32 pin_based_vm_exec_control;
+-	u32 cpu_based_vm_exec_control;
+-	u32 exception_bitmap;
+-	u32 page_fault_error_code_mask;
+-	u32 page_fault_error_code_match;
+-	u32 cr3_target_count;
+-	u32 vm_exit_controls;
+-	u32 vm_exit_msr_store_count;
+-	u32 vm_exit_msr_load_count;
+-	u32 vm_entry_controls;
+-	u32 vm_entry_msr_load_count;
+-	u32 vm_entry_intr_info_field;
+-	u32 vm_entry_exception_error_code;
+-	u32 vm_entry_instruction_len;
+-	u32 tpr_threshold;
+-	u32 secondary_vm_exec_control;
+-	u32 vm_instruction_error;
+-	u32 vm_exit_reason;
+-	u32 vm_exit_intr_info;
+-	u32 vm_exit_intr_error_code;
+-	u32 idt_vectoring_info_field;
+-	u32 idt_vectoring_error_code;
+-	u32 vm_exit_instruction_len;
+-	u32 vmx_instruction_info;
+-	u32 guest_es_limit;
+-	u32 guest_cs_limit;
+-	u32 guest_ss_limit;
+-	u32 guest_ds_limit;
+-	u32 guest_fs_limit;
+-	u32 guest_gs_limit;
+-	u32 guest_ldtr_limit;
+-	u32 guest_tr_limit;
+-	u32 guest_gdtr_limit;
+-	u32 guest_idtr_limit;
+-	u32 guest_es_ar_bytes;
+-	u32 guest_cs_ar_bytes;
+-	u32 guest_ss_ar_bytes;
+-	u32 guest_ds_ar_bytes;
+-	u32 guest_fs_ar_bytes;
+-	u32 guest_gs_ar_bytes;
+-	u32 guest_ldtr_ar_bytes;
+-	u32 guest_tr_ar_bytes;
+-	u32 guest_interruptibility_info;
+-	u32 guest_activity_state;
+-	u32 guest_sysenter_cs;
+-	u32 host_ia32_sysenter_cs;
+-	u32 vmx_preemption_timer_value;
+-	u32 padding32[7]; /* room for future expansion */
+-	u16 virtual_processor_id;
+-	u16 posted_intr_nv;
+-	u16 guest_es_selector;
+-	u16 guest_cs_selector;
+-	u16 guest_ss_selector;
+-	u16 guest_ds_selector;
+-	u16 guest_fs_selector;
+-	u16 guest_gs_selector;
+-	u16 guest_ldtr_selector;
+-	u16 guest_tr_selector;
+-	u16 guest_intr_status;
+-	u16 host_es_selector;
+-	u16 host_cs_selector;
+-	u16 host_ss_selector;
+-	u16 host_ds_selector;
+-	u16 host_fs_selector;
+-	u16 host_gs_selector;
+-	u16 host_tr_selector;
+-	u16 guest_pml_index;
+-};
+-
+-/*
+- * For save/restore compatibility, the vmcs12 field offsets must not change.
+- */
+-#define CHECK_OFFSET(field, loc)				\
+-	BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),	\
+-		"Offset of " #field " in struct vmcs12 has changed.")
+-
+-static inline void vmx_check_vmcs12_offsets(void) {
+-	CHECK_OFFSET(hdr, 0);
+-	CHECK_OFFSET(abort, 4);
+-	CHECK_OFFSET(launch_state, 8);
+-	CHECK_OFFSET(io_bitmap_a, 40);
+-	CHECK_OFFSET(io_bitmap_b, 48);
+-	CHECK_OFFSET(msr_bitmap, 56);
+-	CHECK_OFFSET(vm_exit_msr_store_addr, 64);
+-	CHECK_OFFSET(vm_exit_msr_load_addr, 72);
+-	CHECK_OFFSET(vm_entry_msr_load_addr, 80);
+-	CHECK_OFFSET(tsc_offset, 88);
+-	CHECK_OFFSET(virtual_apic_page_addr, 96);
+-	CHECK_OFFSET(apic_access_addr, 104);
+-	CHECK_OFFSET(posted_intr_desc_addr, 112);
+-	CHECK_OFFSET(ept_pointer, 120);
+-	CHECK_OFFSET(eoi_exit_bitmap0, 128);
+-	CHECK_OFFSET(eoi_exit_bitmap1, 136);
+-	CHECK_OFFSET(eoi_exit_bitmap2, 144);
+-	CHECK_OFFSET(eoi_exit_bitmap3, 152);
+-	CHECK_OFFSET(xss_exit_bitmap, 160);
+-	CHECK_OFFSET(guest_physical_address, 168);
+-	CHECK_OFFSET(vmcs_link_pointer, 176);
+-	CHECK_OFFSET(guest_ia32_debugctl, 184);
+-	CHECK_OFFSET(guest_ia32_pat, 192);
+-	CHECK_OFFSET(guest_ia32_efer, 200);
+-	CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
+-	CHECK_OFFSET(guest_pdptr0, 216);
+-	CHECK_OFFSET(guest_pdptr1, 224);
+-	CHECK_OFFSET(guest_pdptr2, 232);
+-	CHECK_OFFSET(guest_pdptr3, 240);
+-	CHECK_OFFSET(guest_bndcfgs, 248);
+-	CHECK_OFFSET(host_ia32_pat, 256);
+-	CHECK_OFFSET(host_ia32_efer, 264);
+-	CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
+-	CHECK_OFFSET(vmread_bitmap, 280);
+-	CHECK_OFFSET(vmwrite_bitmap, 288);
+-	CHECK_OFFSET(vm_function_control, 296);
+-	CHECK_OFFSET(eptp_list_address, 304);
+-	CHECK_OFFSET(pml_address, 312);
+-	CHECK_OFFSET(cr0_guest_host_mask, 344);
+-	CHECK_OFFSET(cr4_guest_host_mask, 352);
+-	CHECK_OFFSET(cr0_read_shadow, 360);
+-	CHECK_OFFSET(cr4_read_shadow, 368);
+-	CHECK_OFFSET(cr3_target_value0, 376);
+-	CHECK_OFFSET(cr3_target_value1, 384);
+-	CHECK_OFFSET(cr3_target_value2, 392);
+-	CHECK_OFFSET(cr3_target_value3, 400);
+-	CHECK_OFFSET(exit_qualification, 408);
+-	CHECK_OFFSET(guest_linear_address, 416);
+-	CHECK_OFFSET(guest_cr0, 424);
+-	CHECK_OFFSET(guest_cr3, 432);
+-	CHECK_OFFSET(guest_cr4, 440);
+-	CHECK_OFFSET(guest_es_base, 448);
+-	CHECK_OFFSET(guest_cs_base, 456);
+-	CHECK_OFFSET(guest_ss_base, 464);
+-	CHECK_OFFSET(guest_ds_base, 472);
+-	CHECK_OFFSET(guest_fs_base, 480);
+-	CHECK_OFFSET(guest_gs_base, 488);
+-	CHECK_OFFSET(guest_ldtr_base, 496);
+-	CHECK_OFFSET(guest_tr_base, 504);
+-	CHECK_OFFSET(guest_gdtr_base, 512);
+-	CHECK_OFFSET(guest_idtr_base, 520);
+-	CHECK_OFFSET(guest_dr7, 528);
+-	CHECK_OFFSET(guest_rsp, 536);
+-	CHECK_OFFSET(guest_rip, 544);
+-	CHECK_OFFSET(guest_rflags, 552);
+-	CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
+-	CHECK_OFFSET(guest_sysenter_esp, 568);
+-	CHECK_OFFSET(guest_sysenter_eip, 576);
+-	CHECK_OFFSET(host_cr0, 584);
+-	CHECK_OFFSET(host_cr3, 592);
+-	CHECK_OFFSET(host_cr4, 600);
+-	CHECK_OFFSET(host_fs_base, 608);
+-	CHECK_OFFSET(host_gs_base, 616);
+-	CHECK_OFFSET(host_tr_base, 624);
+-	CHECK_OFFSET(host_gdtr_base, 632);
+-	CHECK_OFFSET(host_idtr_base, 640);
+-	CHECK_OFFSET(host_ia32_sysenter_esp, 648);
+-	CHECK_OFFSET(host_ia32_sysenter_eip, 656);
+-	CHECK_OFFSET(host_rsp, 664);
+-	CHECK_OFFSET(host_rip, 672);
+-	CHECK_OFFSET(pin_based_vm_exec_control, 744);
+-	CHECK_OFFSET(cpu_based_vm_exec_control, 748);
+-	CHECK_OFFSET(exception_bitmap, 752);
+-	CHECK_OFFSET(page_fault_error_code_mask, 756);
+-	CHECK_OFFSET(page_fault_error_code_match, 760);
+-	CHECK_OFFSET(cr3_target_count, 764);
+-	CHECK_OFFSET(vm_exit_controls, 768);
+-	CHECK_OFFSET(vm_exit_msr_store_count, 772);
+-	CHECK_OFFSET(vm_exit_msr_load_count, 776);
+-	CHECK_OFFSET(vm_entry_controls, 780);
+-	CHECK_OFFSET(vm_entry_msr_load_count, 784);
+-	CHECK_OFFSET(vm_entry_intr_info_field, 788);
+-	CHECK_OFFSET(vm_entry_exception_error_code, 792);
+-	CHECK_OFFSET(vm_entry_instruction_len, 796);
+-	CHECK_OFFSET(tpr_threshold, 800);
+-	CHECK_OFFSET(secondary_vm_exec_control, 804);
+-	CHECK_OFFSET(vm_instruction_error, 808);
+-	CHECK_OFFSET(vm_exit_reason, 812);
+-	CHECK_OFFSET(vm_exit_intr_info, 816);
+-	CHECK_OFFSET(vm_exit_intr_error_code, 820);
+-	CHECK_OFFSET(idt_vectoring_info_field, 824);
+-	CHECK_OFFSET(idt_vectoring_error_code, 828);
+-	CHECK_OFFSET(vm_exit_instruction_len, 832);
+-	CHECK_OFFSET(vmx_instruction_info, 836);
+-	CHECK_OFFSET(guest_es_limit, 840);
+-	CHECK_OFFSET(guest_cs_limit, 844);
+-	CHECK_OFFSET(guest_ss_limit, 848);
+-	CHECK_OFFSET(guest_ds_limit, 852);
+-	CHECK_OFFSET(guest_fs_limit, 856);
+-	CHECK_OFFSET(guest_gs_limit, 860);
+-	CHECK_OFFSET(guest_ldtr_limit, 864);
+-	CHECK_OFFSET(guest_tr_limit, 868);
+-	CHECK_OFFSET(guest_gdtr_limit, 872);
+-	CHECK_OFFSET(guest_idtr_limit, 876);
+-	CHECK_OFFSET(guest_es_ar_bytes, 880);
+-	CHECK_OFFSET(guest_cs_ar_bytes, 884);
+-	CHECK_OFFSET(guest_ss_ar_bytes, 888);
+-	CHECK_OFFSET(guest_ds_ar_bytes, 892);
+-	CHECK_OFFSET(guest_fs_ar_bytes, 896);
+-	CHECK_OFFSET(guest_gs_ar_bytes, 900);
+-	CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
+-	CHECK_OFFSET(guest_tr_ar_bytes, 908);
+-	CHECK_OFFSET(guest_interruptibility_info, 912);
+-	CHECK_OFFSET(guest_activity_state, 916);
+-	CHECK_OFFSET(guest_sysenter_cs, 920);
+-	CHECK_OFFSET(host_ia32_sysenter_cs, 924);
+-	CHECK_OFFSET(vmx_preemption_timer_value, 928);
+-	CHECK_OFFSET(virtual_processor_id, 960);
+-	CHECK_OFFSET(posted_intr_nv, 962);
+-	CHECK_OFFSET(guest_es_selector, 964);
+-	CHECK_OFFSET(guest_cs_selector, 966);
+-	CHECK_OFFSET(guest_ss_selector, 968);
+-	CHECK_OFFSET(guest_ds_selector, 970);
+-	CHECK_OFFSET(guest_fs_selector, 972);
+-	CHECK_OFFSET(guest_gs_selector, 974);
+-	CHECK_OFFSET(guest_ldtr_selector, 976);
+-	CHECK_OFFSET(guest_tr_selector, 978);
+-	CHECK_OFFSET(guest_intr_status, 980);
+-	CHECK_OFFSET(host_es_selector, 982);
+-	CHECK_OFFSET(host_cs_selector, 984);
+-	CHECK_OFFSET(host_ss_selector, 986);
+-	CHECK_OFFSET(host_ds_selector, 988);
+-	CHECK_OFFSET(host_fs_selector, 990);
+-	CHECK_OFFSET(host_gs_selector, 992);
+-	CHECK_OFFSET(host_tr_selector, 994);
+-	CHECK_OFFSET(guest_pml_index, 996);
+-}
+-
+-/*
+- * VMCS12_REVISION is an arbitrary id that should be changed if the content or
+- * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
+- * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
+- *
+- * IMPORTANT: Changing this value will break save/restore compatibility with
+- * older kvm releases.
+- */
+-#define VMCS12_REVISION 0x11e57ed0
+-
+-/*
+- * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
+- * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
+- * current implementation, 4K are reserved to avoid future complications.
+- */
+-#define VMCS12_SIZE 0x1000
+-
+-/*
+- * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
+- * supported VMCS12 field encoding.
+- */
+-#define VMCS12_MAX_FIELD_INDEX 0x17
+-
+-struct nested_vmx_msrs {
+-	/*
+-	 * We only store the "true" versions of the VMX capability MSRs. We
+-	 * generate the "non-true" versions by setting the must-be-1 bits
+-	 * according to the SDM.
+-	 */
+-	u32 procbased_ctls_low;
+-	u32 procbased_ctls_high;
+-	u32 secondary_ctls_low;
+-	u32 secondary_ctls_high;
+-	u32 pinbased_ctls_low;
+-	u32 pinbased_ctls_high;
+-	u32 exit_ctls_low;
+-	u32 exit_ctls_high;
+-	u32 entry_ctls_low;
+-	u32 entry_ctls_high;
+-	u32 misc_low;
+-	u32 misc_high;
+-	u32 ept_caps;
+-	u32 vpid_caps;
+-	u64 basic;
+-	u64 cr0_fixed0;
+-	u64 cr0_fixed1;
+-	u64 cr4_fixed0;
+-	u64 cr4_fixed1;
+-	u64 vmcs_enum;
+-	u64 vmfunc_controls;
+-};
+-
+-/*
+- * The nested_vmx structure is part of vcpu_vmx, and holds information we need
+- * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
+- */
+-struct nested_vmx {
+-	/* Has the level1 guest done vmxon? */
+-	bool vmxon;
+-	gpa_t vmxon_ptr;
+-	bool pml_full;
+-
+-	/* The guest-physical address of the current VMCS L1 keeps for L2 */
+-	gpa_t current_vmptr;
+-	/*
+-	 * Cache of the guest's VMCS, existing outside of guest memory.
+-	 * Loaded from guest memory during VMPTRLD. Flushed to guest
+-	 * memory during VMCLEAR and VMPTRLD.
+-	 */
+-	struct vmcs12 *cached_vmcs12;
+-	/*
+-	 * Cache of the guest's shadow VMCS, existing outside of guest
+-	 * memory. Loaded from guest memory during VM entry. Flushed
+-	 * to guest memory during VM exit.
+-	 */
+-	struct vmcs12 *cached_shadow_vmcs12;
+-	/*
+-	 * Indicates if the shadow vmcs must be updated with the
+-	 * data hold by vmcs12
+-	 */
+-	bool sync_shadow_vmcs;
+-	bool dirty_vmcs12;
+-
+-	bool change_vmcs01_virtual_apic_mode;
+-
+-	/* L2 must run next, and mustn't decide to exit to L1. */
+-	bool nested_run_pending;
+-
+-	struct loaded_vmcs vmcs02;
+-
+-	/*
+-	 * Guest pages referred to in the vmcs02 with host-physical
+-	 * pointers, so we must keep them pinned while L2 runs.
+-	 */
+-	struct page *apic_access_page;
+-	struct page *virtual_apic_page;
+-	struct page *pi_desc_page;
+-	struct pi_desc *pi_desc;
+-	bool pi_pending;
+-	u16 posted_intr_nv;
+-
+-	struct hrtimer preemption_timer;
+-	bool preemption_timer_expired;
+-
+-	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
+-	u64 vmcs01_debugctl;
+-	u64 vmcs01_guest_bndcfgs;
+-
+-	u16 vpid02;
+-	u16 last_vpid;
+-
+-	struct nested_vmx_msrs msrs;
+-
+-	/* SMM related state */
+-	struct {
+-		/* in VMX operation on SMM entry? */
+-		bool vmxon;
+-		/* in guest mode on SMM entry? */
+-		bool guest_mode;
+-	} smm;
+-};
+-
+-#define POSTED_INTR_ON  0
+-#define POSTED_INTR_SN  1
+-
+-/* Posted-Interrupt Descriptor */
+-struct pi_desc {
+-	u32 pir[8];     /* Posted interrupt requested */
+-	union {
+-		struct {
+-				/* bit 256 - Outstanding Notification */
+-			u16	on	: 1,
+-				/* bit 257 - Suppress Notification */
+-				sn	: 1,
+-				/* bit 271:258 - Reserved */
+-				rsvd_1	: 14;
+-				/* bit 279:272 - Notification Vector */
+-			u8	nv;
+-				/* bit 287:280 - Reserved */
+-			u8	rsvd_2;
+-				/* bit 319:288 - Notification Destination */
+-			u32	ndst;
+-		};
+-		u64 control;
+-	};
+-	u32 rsvd[6];
+-} __aligned(64);
+-
+-static bool pi_test_and_set_on(struct pi_desc *pi_desc)
+-{
+-	return test_and_set_bit(POSTED_INTR_ON,
+-			(unsigned long *)&pi_desc->control);
+-}
+-
+-static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
+-{
+-	return test_and_clear_bit(POSTED_INTR_ON,
+-			(unsigned long *)&pi_desc->control);
+-}
+-
+-static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
+-{
+-	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
+-}
+-
+-static inline void pi_clear_sn(struct pi_desc *pi_desc)
+-{
+-	return clear_bit(POSTED_INTR_SN,
+-			(unsigned long *)&pi_desc->control);
+-}
+-
+-static inline void pi_set_sn(struct pi_desc *pi_desc)
+-{
+-	return set_bit(POSTED_INTR_SN,
+-			(unsigned long *)&pi_desc->control);
+-}
+-
+-static inline void pi_clear_on(struct pi_desc *pi_desc)
+-{
+-	clear_bit(POSTED_INTR_ON,
+-  		  (unsigned long *)&pi_desc->control);
+-}
+-
+-static inline int pi_test_on(struct pi_desc *pi_desc)
+-{
+-	return test_bit(POSTED_INTR_ON,
+-			(unsigned long *)&pi_desc->control);
+-}
+-
+-static inline int pi_test_sn(struct pi_desc *pi_desc)
+-{
+-	return test_bit(POSTED_INTR_SN,
+-			(unsigned long *)&pi_desc->control);
+-}
+-
+-struct vmx_msrs {
+-	unsigned int		nr;
+-	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
+-};
+-
+-struct vcpu_vmx {
+-	struct kvm_vcpu       vcpu;
+-	unsigned long         host_rsp;
+-	u8                    fail;
+-	u8		      msr_bitmap_mode;
+-	u32                   exit_intr_info;
+-	u32                   idt_vectoring_info;
+-	ulong                 rflags;
+-	struct shared_msr_entry *guest_msrs;
+-	int                   nmsrs;
+-	int                   save_nmsrs;
+-	bool                  guest_msrs_dirty;
+-	unsigned long	      host_idt_base;
+-#ifdef CONFIG_X86_64
+-	u64 		      msr_host_kernel_gs_base;
+-	u64 		      msr_guest_kernel_gs_base;
+-#endif
+-
+-	u64 		      spec_ctrl;
+-
+-	u32 vm_entry_controls_shadow;
+-	u32 vm_exit_controls_shadow;
+-	u32 secondary_exec_control;
+-
+-	/*
+-	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
+-	 * non-nested (L1) guest, it always points to vmcs01. For a nested
+-	 * guest (L2), it points to a different VMCS.  loaded_cpu_state points
+-	 * to the VMCS whose state is loaded into the CPU registers that only
+-	 * need to be switched when transitioning to/from the kernel; a NULL
+-	 * value indicates that host state is loaded.
+-	 */
+-	struct loaded_vmcs    vmcs01;
+-	struct loaded_vmcs   *loaded_vmcs;
+-	struct loaded_vmcs   *loaded_cpu_state;
+-	bool                  __launched; /* temporary, used in vmx_vcpu_run */
+-	struct msr_autoload {
+-		struct vmx_msrs guest;
+-		struct vmx_msrs host;
+-	} msr_autoload;
+-
+-	struct {
+-		int vm86_active;
+-		ulong save_rflags;
+-		struct kvm_segment segs[8];
+-	} rmode;
+-	struct {
+-		u32 bitmask; /* 4 bits per segment (1 bit per field) */
+-		struct kvm_save_segment {
+-			u16 selector;
+-			unsigned long base;
+-			u32 limit;
+-			u32 ar;
+-		} seg[8];
+-	} segment_cache;
+-	int vpid;
+-	bool emulation_required;
+-
+-	u32 exit_reason;
+-
+-	/* Posted interrupt descriptor */
+-	struct pi_desc pi_desc;
+-
+-	/* Support for a guest hypervisor (nested VMX) */
+-	struct nested_vmx nested;
+-
+-	/* Dynamic PLE window. */
+-	int ple_window;
+-	bool ple_window_dirty;
+-
+-	bool req_immediate_exit;
+-
+-	/* Support for PML */
+-#define PML_ENTITY_NUM		512
+-	struct page *pml_pg;
+-
+-	/* apic deadline value in host tsc */
+-	u64 hv_deadline_tsc;
+-
+-	u64 current_tsc_ratio;
+-
+-	u32 host_pkru;
+-
+-	unsigned long host_debugctlmsr;
+-
+-	/*
+-	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
+-	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
+-	 * in msr_ia32_feature_control_valid_bits.
+-	 */
+-	u64 msr_ia32_feature_control;
+-	u64 msr_ia32_feature_control_valid_bits;
+-	u64 ept_pointer;
+-	u64 msr_ia32_mcu_opt_ctrl;
+-	bool disable_fb_clear;
+-};
+-
+-enum segment_cache_field {
+-	SEG_FIELD_SEL = 0,
+-	SEG_FIELD_BASE = 1,
+-	SEG_FIELD_LIMIT = 2,
+-	SEG_FIELD_AR = 3,
+-
+-	SEG_FIELD_NR = 4
+-};
+-
+-static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
+-{
+-	return container_of(kvm, struct kvm_vmx, kvm);
+-}
+-
+-static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
+-{
+-	return container_of(vcpu, struct vcpu_vmx, vcpu);
+-}
+-
+-static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
+-{
+-	return &(to_vmx(vcpu)->pi_desc);
+-}
+-
+-#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+-#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
+-#define FIELD(number, name)	[ROL16(number, 6)] = VMCS12_OFFSET(name)
+-#define FIELD64(number, name)						\
+-	FIELD(number, name),						\
+-	[ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
+-
+-
+-static u16 shadow_read_only_fields[] = {
+-#define SHADOW_FIELD_RO(x) x,
+-#include "vmx_shadow_fields.h"
+-};
+-static int max_shadow_read_only_fields =
+-	ARRAY_SIZE(shadow_read_only_fields);
+-
+-static u16 shadow_read_write_fields[] = {
+-#define SHADOW_FIELD_RW(x) x,
+-#include "vmx_shadow_fields.h"
+-};
+-static int max_shadow_read_write_fields =
+-	ARRAY_SIZE(shadow_read_write_fields);
+-
+-static const unsigned short vmcs_field_to_offset_table[] = {
+-	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
+-	FIELD(POSTED_INTR_NV, posted_intr_nv),
+-	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
+-	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
+-	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
+-	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
+-	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
+-	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
+-	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
+-	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
+-	FIELD(GUEST_INTR_STATUS, guest_intr_status),
+-	FIELD(GUEST_PML_INDEX, guest_pml_index),
+-	FIELD(HOST_ES_SELECTOR, host_es_selector),
+-	FIELD(HOST_CS_SELECTOR, host_cs_selector),
+-	FIELD(HOST_SS_SELECTOR, host_ss_selector),
+-	FIELD(HOST_DS_SELECTOR, host_ds_selector),
+-	FIELD(HOST_FS_SELECTOR, host_fs_selector),
+-	FIELD(HOST_GS_SELECTOR, host_gs_selector),
+-	FIELD(HOST_TR_SELECTOR, host_tr_selector),
+-	FIELD64(IO_BITMAP_A, io_bitmap_a),
+-	FIELD64(IO_BITMAP_B, io_bitmap_b),
+-	FIELD64(MSR_BITMAP, msr_bitmap),
+-	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
+-	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
+-	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
+-	FIELD64(PML_ADDRESS, pml_address),
+-	FIELD64(TSC_OFFSET, tsc_offset),
+-	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
+-	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
+-	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
+-	FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
+-	FIELD64(EPT_POINTER, ept_pointer),
+-	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
+-	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
+-	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
+-	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
+-	FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
+-	FIELD64(VMREAD_BITMAP, vmread_bitmap),
+-	FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
+-	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
+-	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
+-	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
+-	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
+-	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
+-	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
+-	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
+-	FIELD64(GUEST_PDPTR0, guest_pdptr0),
+-	FIELD64(GUEST_PDPTR1, guest_pdptr1),
+-	FIELD64(GUEST_PDPTR2, guest_pdptr2),
+-	FIELD64(GUEST_PDPTR3, guest_pdptr3),
+-	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
+-	FIELD64(HOST_IA32_PAT, host_ia32_pat),
+-	FIELD64(HOST_IA32_EFER, host_ia32_efer),
+-	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
+-	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
+-	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
+-	FIELD(EXCEPTION_BITMAP, exception_bitmap),
+-	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
+-	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
+-	FIELD(CR3_TARGET_COUNT, cr3_target_count),
+-	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
+-	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
+-	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
+-	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
+-	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
+-	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
+-	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
+-	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
+-	FIELD(TPR_THRESHOLD, tpr_threshold),
+-	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
+-	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
+-	FIELD(VM_EXIT_REASON, vm_exit_reason),
+-	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
+-	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
+-	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
+-	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
+-	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
+-	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
+-	FIELD(GUEST_ES_LIMIT, guest_es_limit),
+-	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
+-	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
+-	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
+-	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
+-	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
+-	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
+-	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
+-	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
+-	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
+-	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
+-	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
+-	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
+-	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
+-	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
+-	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
+-	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
+-	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
+-	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
+-	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
+-	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
+-	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
+-	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
+-	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
+-	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
+-	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
+-	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
+-	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
+-	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
+-	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
+-	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
+-	FIELD(EXIT_QUALIFICATION, exit_qualification),
+-	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
+-	FIELD(GUEST_CR0, guest_cr0),
+-	FIELD(GUEST_CR3, guest_cr3),
+-	FIELD(GUEST_CR4, guest_cr4),
+-	FIELD(GUEST_ES_BASE, guest_es_base),
+-	FIELD(GUEST_CS_BASE, guest_cs_base),
+-	FIELD(GUEST_SS_BASE, guest_ss_base),
+-	FIELD(GUEST_DS_BASE, guest_ds_base),
+-	FIELD(GUEST_FS_BASE, guest_fs_base),
+-	FIELD(GUEST_GS_BASE, guest_gs_base),
+-	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
+-	FIELD(GUEST_TR_BASE, guest_tr_base),
+-	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
+-	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
+-	FIELD(GUEST_DR7, guest_dr7),
+-	FIELD(GUEST_RSP, guest_rsp),
+-	FIELD(GUEST_RIP, guest_rip),
+-	FIELD(GUEST_RFLAGS, guest_rflags),
+-	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
+-	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
+-	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
+-	FIELD(HOST_CR0, host_cr0),
+-	FIELD(HOST_CR3, host_cr3),
+-	FIELD(HOST_CR4, host_cr4),
+-	FIELD(HOST_FS_BASE, host_fs_base),
+-	FIELD(HOST_GS_BASE, host_gs_base),
+-	FIELD(HOST_TR_BASE, host_tr_base),
+-	FIELD(HOST_GDTR_BASE, host_gdtr_base),
+-	FIELD(HOST_IDTR_BASE, host_idtr_base),
+-	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
+-	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
+-	FIELD(HOST_RSP, host_rsp),
+-	FIELD(HOST_RIP, host_rip),
+-};
+-
+-static inline short vmcs_field_to_offset(unsigned long field)
+-{
+-	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
+-	unsigned short offset;
+-	unsigned index;
+-
+-	if (field >> 15)
+-		return -ENOENT;
+-
+-	index = ROL16(field, 6);
+-	if (index >= size)
+-		return -ENOENT;
+-
+-	index = array_index_nospec(index, size);
+-	offset = vmcs_field_to_offset_table[index];
+-	if (offset == 0)
+-		return -ENOENT;
+-	return offset;
+-}
+-
+-static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+-{
+-	return to_vmx(vcpu)->nested.cached_vmcs12;
+-}
+-
+-static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
+-{
+-	return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
+-}
+-
+-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
+-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
+-static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
+-static bool vmx_xsaves_supported(void);
+-static void vmx_set_segment(struct kvm_vcpu *vcpu,
+-			    struct kvm_segment *var, int seg);
+-static void vmx_get_segment(struct kvm_vcpu *vcpu,
+-			    struct kvm_segment *var, int seg);
+-static bool guest_state_valid(struct kvm_vcpu *vcpu);
+-static u32 vmx_segment_access_rights(struct kvm_segment *var);
+-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
+-static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
+-static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
+-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+-					    u16 error_code);
+-static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
+-static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+-							  u32 msr, int type);
+-
+-static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+-static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+-/*
+- * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+- * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+- */
+-static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+-
+-/*
+- * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
+- * can find which vCPU should be waken up.
+- */
+-static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
+-static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
+-
+-enum {
+-	VMX_VMREAD_BITMAP,
+-	VMX_VMWRITE_BITMAP,
+-	VMX_BITMAP_NR
+-};
+-
+-static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
+-
+-#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
+-#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
+-
+-static bool cpu_has_load_ia32_efer;
+-static bool cpu_has_load_perf_global_ctrl;
+-
+-static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+-static DEFINE_SPINLOCK(vmx_vpid_lock);
+-
+-static struct vmcs_config {
+-	int size;
+-	int order;
+-	u32 basic_cap;
+-	u32 revision_id;
+-	u32 pin_based_exec_ctrl;
+-	u32 cpu_based_exec_ctrl;
+-	u32 cpu_based_2nd_exec_ctrl;
+-	u32 vmexit_ctrl;
+-	u32 vmentry_ctrl;
+-	struct nested_vmx_msrs nested;
+-} vmcs_config;
+-
+-static struct vmx_capability {
+-	u32 ept;
+-	u32 vpid;
+-} vmx_capability;
+-
+-#define VMX_SEGMENT_FIELD(seg)					\
+-	[VCPU_SREG_##seg] = {                                   \
+-		.selector = GUEST_##seg##_SELECTOR,		\
+-		.base = GUEST_##seg##_BASE,		   	\
+-		.limit = GUEST_##seg##_LIMIT,		   	\
+-		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
+-	}
+-
+-static const struct kvm_vmx_segment_field {
+-	unsigned selector;
+-	unsigned base;
+-	unsigned limit;
+-	unsigned ar_bytes;
+-} kvm_vmx_segment_fields[] = {
+-	VMX_SEGMENT_FIELD(CS),
+-	VMX_SEGMENT_FIELD(DS),
+-	VMX_SEGMENT_FIELD(ES),
+-	VMX_SEGMENT_FIELD(FS),
+-	VMX_SEGMENT_FIELD(GS),
+-	VMX_SEGMENT_FIELD(SS),
+-	VMX_SEGMENT_FIELD(TR),
+-	VMX_SEGMENT_FIELD(LDTR),
+-};
+-
+-static u64 host_efer;
+-
+-static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
+-
+-/*
+- * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
+- * away by decrementing the array size.
+- */
+-static const u32 vmx_msr_index[] = {
+-#ifdef CONFIG_X86_64
+-	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+-#endif
+-	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+-};
+-
+-DEFINE_STATIC_KEY_FALSE(enable_evmcs);
+-
+-#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
+-
+-#define KVM_EVMCS_VERSION 1
+-
+-#if IS_ENABLED(CONFIG_HYPERV)
+-static bool __read_mostly enlightened_vmcs = true;
+-module_param(enlightened_vmcs, bool, 0444);
+-
+-static inline void evmcs_write64(unsigned long field, u64 value)
+-{
+-	u16 clean_field;
+-	int offset = get_evmcs_offset(field, &clean_field);
+-
+-	if (offset < 0)
+-		return;
+-
+-	*(u64 *)((char *)current_evmcs + offset) = value;
+-
+-	current_evmcs->hv_clean_fields &= ~clean_field;
+-}
+-
+-static inline void evmcs_write32(unsigned long field, u32 value)
+-{
+-	u16 clean_field;
+-	int offset = get_evmcs_offset(field, &clean_field);
+-
+-	if (offset < 0)
+-		return;
+-
+-	*(u32 *)((char *)current_evmcs + offset) = value;
+-	current_evmcs->hv_clean_fields &= ~clean_field;
+-}
+-
+-static inline void evmcs_write16(unsigned long field, u16 value)
+-{
+-	u16 clean_field;
+-	int offset = get_evmcs_offset(field, &clean_field);
+-
+-	if (offset < 0)
+-		return;
+-
+-	*(u16 *)((char *)current_evmcs + offset) = value;
+-	current_evmcs->hv_clean_fields &= ~clean_field;
+-}
+-
+-static inline u64 evmcs_read64(unsigned long field)
+-{
+-	int offset = get_evmcs_offset(field, NULL);
+-
+-	if (offset < 0)
+-		return 0;
+-
+-	return *(u64 *)((char *)current_evmcs + offset);
+-}
+-
+-static inline u32 evmcs_read32(unsigned long field)
+-{
+-	int offset = get_evmcs_offset(field, NULL);
+-
+-	if (offset < 0)
+-		return 0;
+-
+-	return *(u32 *)((char *)current_evmcs + offset);
+-}
+-
+-static inline u16 evmcs_read16(unsigned long field)
+-{
+-	int offset = get_evmcs_offset(field, NULL);
+-
+-	if (offset < 0)
+-		return 0;
+-
+-	return *(u16 *)((char *)current_evmcs + offset);
+-}
+-
+-static inline void evmcs_touch_msr_bitmap(void)
+-{
+-	if (unlikely(!current_evmcs))
+-		return;
+-
+-	if (current_evmcs->hv_enlightenments_control.msr_bitmap)
+-		current_evmcs->hv_clean_fields &=
+-			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
+-}
+-
+-static void evmcs_load(u64 phys_addr)
+-{
+-	struct hv_vp_assist_page *vp_ap =
+-		hv_get_vp_assist_page(smp_processor_id());
+-
+-	vp_ap->current_nested_vmcs = phys_addr;
+-	vp_ap->enlighten_vmentry = 1;
+-}
+-
+-static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
+-{
+-	/*
+-	 * Enlightened VMCSv1 doesn't support these:
+-	 *
+-	 *	POSTED_INTR_NV                  = 0x00000002,
+-	 *	GUEST_INTR_STATUS               = 0x00000810,
+-	 *	APIC_ACCESS_ADDR		= 0x00002014,
+-	 *	POSTED_INTR_DESC_ADDR           = 0x00002016,
+-	 *	EOI_EXIT_BITMAP0                = 0x0000201c,
+-	 *	EOI_EXIT_BITMAP1                = 0x0000201e,
+-	 *	EOI_EXIT_BITMAP2                = 0x00002020,
+-	 *	EOI_EXIT_BITMAP3                = 0x00002022,
+-	 */
+-	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &=
+-		~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &=
+-		~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &=
+-		~SECONDARY_EXEC_APIC_REGISTER_VIRT;
+-
+-	/*
+-	 *	GUEST_PML_INDEX			= 0x00000812,
+-	 *	PML_ADDRESS			= 0x0000200e,
+-	 */
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
+-
+-	/*	VM_FUNCTION_CONTROL             = 0x00002018, */
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
+-
+-	/*
+-	 *	EPTP_LIST_ADDRESS               = 0x00002024,
+-	 *	VMREAD_BITMAP                   = 0x00002026,
+-	 *	VMWRITE_BITMAP                  = 0x00002028,
+-	 */
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
+-
+-	/*
+-	 *	TSC_MULTIPLIER                  = 0x00002032,
+-	 */
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
+-
+-	/*
+-	 *	PLE_GAP                         = 0x00004020,
+-	 *	PLE_WINDOW                      = 0x00004022,
+-	 */
+-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+-
+-	/*
+-	 *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
+-	 */
+-	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+-
+-	/*
+-	 *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
+-	 *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
+-	 */
+-	vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+-	vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+-
+-	/*
+-	 * Currently unsupported in KVM:
+-	 *	GUEST_IA32_RTIT_CTL		= 0x00002814,
+-	 */
+-}
+-
+-/* check_ept_pointer() should be under protection of ept_pointer_lock. */
+-static void check_ept_pointer_match(struct kvm *kvm)
+-{
+-	struct kvm_vcpu *vcpu;
+-	u64 tmp_eptp = INVALID_PAGE;
+-	int i;
+-
+-	kvm_for_each_vcpu(i, vcpu, kvm) {
+-		if (!VALID_PAGE(tmp_eptp)) {
+-			tmp_eptp = to_vmx(vcpu)->ept_pointer;
+-		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
+-			to_kvm_vmx(kvm)->ept_pointers_match
+-				= EPT_POINTERS_MISMATCH;
+-			return;
+-		}
+-	}
+-
+-	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
+-}
+-
+-static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
+-{
+-	int ret;
+-
+-	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+-
+-	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
+-		check_ept_pointer_match(kvm);
+-
+-	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
+-		ret = -ENOTSUPP;
+-		goto out;
+-	}
+-
+-	/*
+-	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
+-	 * base of EPT PML4 table, strip off EPT configuration information.
+-	 */
+-	ret = hyperv_flush_guest_mapping(
+-			to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
+-
+-out:
+-	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+-	return ret;
+-}
+-#else /* !IS_ENABLED(CONFIG_HYPERV) */
+-static inline void evmcs_write64(unsigned long field, u64 value) {}
+-static inline void evmcs_write32(unsigned long field, u32 value) {}
+-static inline void evmcs_write16(unsigned long field, u16 value) {}
+-static inline u64 evmcs_read64(unsigned long field) { return 0; }
+-static inline u32 evmcs_read32(unsigned long field) { return 0; }
+-static inline u16 evmcs_read16(unsigned long field) { return 0; }
+-static inline void evmcs_load(u64 phys_addr) {}
+-static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
+-static inline void evmcs_touch_msr_bitmap(void) {}
+-#endif /* IS_ENABLED(CONFIG_HYPERV) */
+-
+-static inline bool is_exception_n(u32 intr_info, u8 vector)
+-{
+-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+-			     INTR_INFO_VALID_MASK)) ==
+-		(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
+-}
+-
+-static inline bool is_debug(u32 intr_info)
+-{
+-	return is_exception_n(intr_info, DB_VECTOR);
+-}
+-
+-static inline bool is_breakpoint(u32 intr_info)
+-{
+-	return is_exception_n(intr_info, BP_VECTOR);
+-}
+-
+-static inline bool is_page_fault(u32 intr_info)
+-{
+-	return is_exception_n(intr_info, PF_VECTOR);
+-}
+-
+-static inline bool is_no_device(u32 intr_info)
+-{
+-	return is_exception_n(intr_info, NM_VECTOR);
+-}
+-
+-static inline bool is_invalid_opcode(u32 intr_info)
+-{
+-	return is_exception_n(intr_info, UD_VECTOR);
+-}
+-
+-static inline bool is_gp_fault(u32 intr_info)
+-{
+-	return is_exception_n(intr_info, GP_VECTOR);
+-}
+-
+-static inline bool is_external_interrupt(u32 intr_info)
+-{
+-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+-		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
+-}
+-
+-static inline bool is_machine_check(u32 intr_info)
+-{
+-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+-			     INTR_INFO_VALID_MASK)) ==
+-		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
+-}
+-
+-/* Undocumented: icebp/int1 */
+-static inline bool is_icebp(u32 intr_info)
+-{
+-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+-		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
+-}
+-
+-static inline bool cpu_has_vmx_msr_bitmap(void)
+-{
+-	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
+-}
+-
+-static inline bool cpu_has_vmx_tpr_shadow(void)
+-{
+-	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
+-}
+-
+-static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
+-{
+-	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
+-}
+-
+-static inline bool cpu_has_secondary_exec_ctrls(void)
+-{
+-	return vmcs_config.cpu_based_exec_ctrl &
+-		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+-}
+-
+-static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+-}
+-
+-static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+-}
+-
+-static inline bool cpu_has_vmx_apic_register_virt(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_APIC_REGISTER_VIRT;
+-}
+-
+-static inline bool cpu_has_vmx_virtual_intr_delivery(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
+-}
+-
+-static inline bool cpu_has_vmx_encls_vmexit(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_ENCLS_EXITING;
+-}
+-
+-/*
+- * Comment's format: document - errata name - stepping - processor name.
+- * Refer from
+- * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
+- */
+-static u32 vmx_preemption_cpu_tfms[] = {
+-/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
+-0x000206E6,
+-/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
+-/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
+-/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
+-0x00020652,
+-/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
+-0x00020655,
+-/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
+-/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
+-/*
+- * 320767.pdf - AAP86  - B1 -
+- * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
+- */
+-0x000106E5,
+-/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
+-0x000106A0,
+-/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
+-0x000106A1,
+-/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
+-0x000106A4,
+- /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
+- /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
+- /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
+-0x000106A5,
+-};
+-
+-static inline bool cpu_has_broken_vmx_preemption_timer(void)
+-{
+-	u32 eax = cpuid_eax(0x00000001), i;
+-
+-	/* Clear the reserved bits */
+-	eax &= ~(0x3U << 14 | 0xfU << 28);
+-	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
+-		if (eax == vmx_preemption_cpu_tfms[i])
+-			return true;
+-
+-	return false;
+-}
+-
+-static inline bool cpu_has_vmx_preemption_timer(void)
+-{
+-	return vmcs_config.pin_based_exec_ctrl &
+-		PIN_BASED_VMX_PREEMPTION_TIMER;
+-}
+-
+-static inline bool cpu_has_vmx_posted_intr(void)
+-{
+-	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
+-		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
+-}
+-
+-static inline bool cpu_has_vmx_apicv(void)
+-{
+-	return cpu_has_vmx_apic_register_virt() &&
+-		cpu_has_vmx_virtual_intr_delivery() &&
+-		cpu_has_vmx_posted_intr();
+-}
+-
+-static inline bool cpu_has_vmx_flexpriority(void)
+-{
+-	return cpu_has_vmx_tpr_shadow() &&
+-		cpu_has_vmx_virtualize_apic_accesses();
+-}
+-
+-static inline bool cpu_has_vmx_ept_execute_only(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept_2m_page(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept_1g_page(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept_4levels(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept_mt_wb(void)
+-{
+-	return vmx_capability.ept & VMX_EPTP_WB_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept_5levels(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept_ad_bits(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_AD_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_invept_context(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_invept_global(void)
+-{
+-	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_invvpid_individual_addr(void)
+-{
+-	return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_invvpid_single(void)
+-{
+-	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_invvpid_global(void)
+-{
+-	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_invvpid(void)
+-{
+-	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
+-}
+-
+-static inline bool cpu_has_vmx_ept(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_ENABLE_EPT;
+-}
+-
+-static inline bool cpu_has_vmx_unrestricted_guest(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_UNRESTRICTED_GUEST;
+-}
+-
+-static inline bool cpu_has_vmx_ple(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+-}
+-
+-static inline bool cpu_has_vmx_basic_inout(void)
+-{
+-	return	(((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
+-}
+-
+-static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
+-{
+-	return flexpriority_enabled && lapic_in_kernel(vcpu);
+-}
+-
+-static inline bool cpu_has_vmx_vpid(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_ENABLE_VPID;
+-}
+-
+-static inline bool cpu_has_vmx_rdtscp(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_RDTSCP;
+-}
+-
+-static inline bool cpu_has_vmx_invpcid(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_ENABLE_INVPCID;
+-}
+-
+-static inline bool cpu_has_virtual_nmis(void)
+-{
+-	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
+-}
+-
+-static inline bool cpu_has_vmx_wbinvd_exit(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_WBINVD_EXITING;
+-}
+-
+-static inline bool cpu_has_vmx_shadow_vmcs(void)
+-{
+-	u64 vmx_msr;
+-	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+-	/* check if the cpu supports writing r/o exit information fields */
+-	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
+-		return false;
+-
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_SHADOW_VMCS;
+-}
+-
+-static inline bool cpu_has_vmx_pml(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
+-}
+-
+-static inline bool cpu_has_vmx_tsc_scaling(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_TSC_SCALING;
+-}
+-
+-static inline bool cpu_has_vmx_vmfunc(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_ENABLE_VMFUNC;
+-}
+-
+-static bool vmx_umip_emulated(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_DESC;
+-}
+-
+-static inline bool report_flexpriority(void)
+-{
+-	return flexpriority_enabled;
+-}
+-
+-static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
+-{
+-	return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
+-}
+-
+-/*
+- * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
+- * to modify any valid field of the VMCS, or are the VM-exit
+- * information fields read-only?
+- */
+-static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
+-{
+-	return to_vmx(vcpu)->nested.msrs.misc_low &
+-		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
+-}
+-
+-static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
+-{
+-	return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
+-}
+-
+-static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
+-{
+-	return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
+-			CPU_BASED_MONITOR_TRAP_FLAG;
+-}
+-
+-static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
+-{
+-	return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+-		SECONDARY_EXEC_SHADOW_VMCS;
+-}
+-
+-static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+-{
+-	return vmcs12->cpu_based_vm_exec_control & bit;
+-}
+-
+-static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+-{
+-	return (vmcs12->cpu_based_vm_exec_control &
+-			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+-		(vmcs12->secondary_vm_exec_control & bit);
+-}
+-
+-static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
+-{
+-	return vmcs12->pin_based_vm_exec_control &
+-		PIN_BASED_VMX_PREEMPTION_TIMER;
+-}
+-
+-static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
+-{
+-	return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
+-}
+-
+-static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
+-{
+-	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+-}
+-
+-static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+-}
+-
+-static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+-}
+-
+-static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
+-}
+-
+-static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+-}
+-
+-static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
+-}
+-
+-static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
+-}
+-
+-static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+-}
+-
+-static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
+-{
+-	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
+-}
+-
+-static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
+-}
+-
+-static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has_vmfunc(vmcs12) &&
+-		(vmcs12->vm_function_control &
+-		 VMX_VMFUNC_EPTP_SWITCHING);
+-}
+-
+-static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
+-{
+-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
+-}
+-
+-static inline bool is_nmi(u32 intr_info)
+-{
+-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+-		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
+-}
+-
+-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+-			      u32 exit_intr_info,
+-			      unsigned long exit_qualification);
+-static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+-			struct vmcs12 *vmcs12,
+-			u32 reason, unsigned long qualification);
+-
+-static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
+-{
+-	int i;
+-
+-	for (i = 0; i < vmx->nmsrs; ++i)
+-		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
+-			return i;
+-	return -1;
+-}
+-
+-static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
+-{
+-    struct {
+-	u64 vpid : 16;
+-	u64 rsvd : 48;
+-	u64 gva;
+-    } operand = { vpid, 0, gva };
+-    bool error;
+-
+-    asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na)
+-		  : CC_OUT(na) (error) : "a"(&operand), "c"(ext)
+-		  : "memory");
+-    BUG_ON(error);
+-}
+-
+-static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
+-{
+-	struct {
+-		u64 eptp, gpa;
+-	} operand = {eptp, gpa};
+-	bool error;
+-
+-	asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na)
+-		      : CC_OUT(na) (error) : "a" (&operand), "c" (ext)
+-		      : "memory");
+-	BUG_ON(error);
+-}
+-
+-static void vmx_setup_fb_clear_ctrl(void)
+-{
+-	u64 msr;
+-
+-	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
+-	    !boot_cpu_has_bug(X86_BUG_MDS) &&
+-	    !boot_cpu_has_bug(X86_BUG_TAA)) {
+-		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+-		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
+-			vmx_fb_clear_ctrl_available = true;
+-	}
+-}
+-
+-static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
+-{
+-	u64 msr;
+-
+-	if (!vmx->disable_fb_clear)
+-		return;
+-
+-	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
+-	msr |= FB_CLEAR_DIS;
+-	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
+-	/* Cache the MSR value to avoid reading it later */
+-	vmx->msr_ia32_mcu_opt_ctrl = msr;
+-}
+-
+-static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
+-{
+-	if (!vmx->disable_fb_clear)
+-		return;
+-
+-	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
+-	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
+-}
+-
+-static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
+-{
+-	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
+-
+-	/*
+-	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
+-	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
+-	 * execute VERW.
+-	 */
+-	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
+-	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
+-	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
+-	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
+-	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
+-	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
+-		vmx->disable_fb_clear = false;
+-}
+-
+-static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
+-{
+-	int i;
+-
+-	i = __find_msr_index(vmx, msr);
+-	if (i >= 0)
+-		return &vmx->guest_msrs[i];
+-	return NULL;
+-}
+-
+-static void vmcs_clear(struct vmcs *vmcs)
+-{
+-	u64 phys_addr = __pa(vmcs);
+-	bool error;
+-
+-	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na)
+-		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
+-		      : "memory");
+-	if (unlikely(error))
+-		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
+-		       vmcs, phys_addr);
+-}
+-
+-static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+-{
+-	vmcs_clear(loaded_vmcs->vmcs);
+-	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
+-		vmcs_clear(loaded_vmcs->shadow_vmcs);
+-	loaded_vmcs->cpu = -1;
+-	loaded_vmcs->launched = 0;
+-}
+-
+-static void vmcs_load(struct vmcs *vmcs)
+-{
+-	u64 phys_addr = __pa(vmcs);
+-	bool error;
+-
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_load(phys_addr);
+-
+-	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na)
+-		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
+-		      : "memory");
+-	if (unlikely(error))
+-		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
+-		       vmcs, phys_addr);
+-}
+-
+-#ifdef CONFIG_KEXEC_CORE
+-static void crash_vmclear_local_loaded_vmcss(void)
+-{
+-	int cpu = raw_smp_processor_id();
+-	struct loaded_vmcs *v;
+-
+-	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+-			    loaded_vmcss_on_cpu_link)
+-		vmcs_clear(v->vmcs);
+-}
+-#endif /* CONFIG_KEXEC_CORE */
+-
+-static void __loaded_vmcs_clear(void *arg)
+-{
+-	struct loaded_vmcs *loaded_vmcs = arg;
+-	int cpu = raw_smp_processor_id();
+-
+-	if (loaded_vmcs->cpu != cpu)
+-		return; /* vcpu migration can race with cpu offline */
+-	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+-		per_cpu(current_vmcs, cpu) = NULL;
+-
+-	vmcs_clear(loaded_vmcs->vmcs);
+-	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
+-		vmcs_clear(loaded_vmcs->shadow_vmcs);
+-
+-	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+-
+-	/*
+-	 * Ensure all writes to loaded_vmcs, including deleting it from its
+-	 * current percpu list, complete before setting loaded_vmcs->vcpu to
+-	 * -1, otherwise a different cpu can see vcpu == -1 first and add
+-	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
+-	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
+-	 */
+-	smp_wmb();
+-
+-	loaded_vmcs->cpu = -1;
+-	loaded_vmcs->launched = 0;
+-}
+-
+-static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+-{
+-	int cpu = loaded_vmcs->cpu;
+-
+-	if (cpu != -1)
+-		smp_call_function_single(cpu,
+-			 __loaded_vmcs_clear, loaded_vmcs, 1);
+-}
+-
+-static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
+-{
+-	if (vpid == 0)
+-		return true;
+-
+-	if (cpu_has_vmx_invvpid_individual_addr()) {
+-		__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
+-		return true;
+-	}
+-
+-	return false;
+-}
+-
+-static inline void vpid_sync_vcpu_single(int vpid)
+-{
+-	if (vpid == 0)
+-		return;
+-
+-	if (cpu_has_vmx_invvpid_single())
+-		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
+-}
+-
+-static inline void vpid_sync_vcpu_global(void)
+-{
+-	if (cpu_has_vmx_invvpid_global())
+-		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
+-}
+-
+-static inline void vpid_sync_context(int vpid)
+-{
+-	if (cpu_has_vmx_invvpid_single())
+-		vpid_sync_vcpu_single(vpid);
+-	else
+-		vpid_sync_vcpu_global();
+-}
+-
+-static inline void ept_sync_global(void)
+-{
+-	__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
+-}
+-
+-static inline void ept_sync_context(u64 eptp)
+-{
+-	if (cpu_has_vmx_invept_context())
+-		__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
+-	else
+-		ept_sync_global();
+-}
+-
+-static __always_inline void vmcs_check16(unsigned long field)
+-{
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
+-			 "16-bit accessor invalid for 64-bit field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+-			 "16-bit accessor invalid for 64-bit high field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+-			 "16-bit accessor invalid for 32-bit high field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+-			 "16-bit accessor invalid for natural width field");
+-}
+-
+-static __always_inline void vmcs_check32(unsigned long field)
+-{
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+-			 "32-bit accessor invalid for 16-bit field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+-			 "32-bit accessor invalid for natural width field");
+-}
+-
+-static __always_inline void vmcs_check64(unsigned long field)
+-{
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+-			 "64-bit accessor invalid for 16-bit field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+-			 "64-bit accessor invalid for 64-bit high field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+-			 "64-bit accessor invalid for 32-bit field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+-			 "64-bit accessor invalid for natural width field");
+-}
+-
+-static __always_inline void vmcs_checkl(unsigned long field)
+-{
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+-			 "Natural width accessor invalid for 16-bit field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
+-			 "Natural width accessor invalid for 64-bit field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+-			 "Natural width accessor invalid for 64-bit high field");
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+-			 "Natural width accessor invalid for 32-bit field");
+-}
+-
+-static __always_inline unsigned long __vmcs_readl(unsigned long field)
+-{
+-	unsigned long value;
+-
+-	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
+-		      : "=a"(value) : "d"(field) : "cc");
+-	return value;
+-}
+-
+-static __always_inline u16 vmcs_read16(unsigned long field)
+-{
+-	vmcs_check16(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_read16(field);
+-	return __vmcs_readl(field);
+-}
+-
+-static __always_inline u32 vmcs_read32(unsigned long field)
+-{
+-	vmcs_check32(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_read32(field);
+-	return __vmcs_readl(field);
+-}
+-
+-static __always_inline u64 vmcs_read64(unsigned long field)
+-{
+-	vmcs_check64(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_read64(field);
+-#ifdef CONFIG_X86_64
+-	return __vmcs_readl(field);
+-#else
+-	return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
+-#endif
+-}
+-
+-static __always_inline unsigned long vmcs_readl(unsigned long field)
+-{
+-	vmcs_checkl(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_read64(field);
+-	return __vmcs_readl(field);
+-}
+-
+-static noinline void vmwrite_error(unsigned long field, unsigned long value)
+-{
+-	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
+-	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+-	dump_stack();
+-}
+-
+-static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
+-{
+-	bool error;
+-
+-	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na)
+-		      : CC_OUT(na) (error) : "a"(value), "d"(field));
+-	if (unlikely(error))
+-		vmwrite_error(field, value);
+-}
+-
+-static __always_inline void vmcs_write16(unsigned long field, u16 value)
+-{
+-	vmcs_check16(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_write16(field, value);
+-
+-	__vmcs_writel(field, value);
+-}
+-
+-static __always_inline void vmcs_write32(unsigned long field, u32 value)
+-{
+-	vmcs_check32(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_write32(field, value);
+-
+-	__vmcs_writel(field, value);
+-}
+-
+-static __always_inline void vmcs_write64(unsigned long field, u64 value)
+-{
+-	vmcs_check64(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_write64(field, value);
+-
+-	__vmcs_writel(field, value);
+-#ifndef CONFIG_X86_64
+-	asm volatile ("");
+-	__vmcs_writel(field+1, value >> 32);
+-#endif
+-}
+-
+-static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
+-{
+-	vmcs_checkl(field);
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_write64(field, value);
+-
+-	__vmcs_writel(field, value);
+-}
+-
+-static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
+-{
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
+-			 "vmcs_clear_bits does not support 64-bit fields");
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_write32(field, evmcs_read32(field) & ~mask);
+-
+-	__vmcs_writel(field, __vmcs_readl(field) & ~mask);
+-}
+-
+-static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
+-{
+-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
+-			 "vmcs_set_bits does not support 64-bit fields");
+-	if (static_branch_unlikely(&enable_evmcs))
+-		return evmcs_write32(field, evmcs_read32(field) | mask);
+-
+-	__vmcs_writel(field, __vmcs_readl(field) | mask);
+-}
+-
+-static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
+-{
+-	vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
+-}
+-
+-static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vmcs_write32(VM_ENTRY_CONTROLS, val);
+-	vmx->vm_entry_controls_shadow = val;
+-}
+-
+-static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
+-{
+-	if (vmx->vm_entry_controls_shadow != val)
+-		vm_entry_controls_init(vmx, val);
+-}
+-
+-static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
+-{
+-	return vmx->vm_entry_controls_shadow;
+-}
+-
+-
+-static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
+-}
+-
+-static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
+-}
+-
+-static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
+-{
+-	vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
+-}
+-
+-static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vmcs_write32(VM_EXIT_CONTROLS, val);
+-	vmx->vm_exit_controls_shadow = val;
+-}
+-
+-static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
+-{
+-	if (vmx->vm_exit_controls_shadow != val)
+-		vm_exit_controls_init(vmx, val);
+-}
+-
+-static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
+-{
+-	return vmx->vm_exit_controls_shadow;
+-}
+-
+-
+-static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
+-}
+-
+-static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
+-}
+-
+-static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
+-{
+-	vmx->segment_cache.bitmask = 0;
+-}
+-
+-static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+-				       unsigned field)
+-{
+-	bool ret;
+-	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+-
+-	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
+-		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
+-		vmx->segment_cache.bitmask = 0;
+-	}
+-	ret = vmx->segment_cache.bitmask & mask;
+-	vmx->segment_cache.bitmask |= mask;
+-	return ret;
+-}
+-
+-static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+-{
+-	u16 *p = &vmx->segment_cache.seg[seg].selector;
+-
+-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+-		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+-	return *p;
+-}
+-
+-static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+-{
+-	ulong *p = &vmx->segment_cache.seg[seg].base;
+-
+-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+-		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+-	return *p;
+-}
+-
+-static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+-{
+-	u32 *p = &vmx->segment_cache.seg[seg].limit;
+-
+-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+-		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+-	return *p;
+-}
+-
+-static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+-{
+-	u32 *p = &vmx->segment_cache.seg[seg].ar;
+-
+-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+-		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+-	return *p;
+-}
+-
+-static void update_exception_bitmap(struct kvm_vcpu *vcpu)
+-{
+-	u32 eb;
+-
+-	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+-	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
+-	/*
+-	 * Guest access to VMware backdoor ports could legitimately
+-	 * trigger #GP because of TSS I/O permission bitmap.
+-	 * We intercept those #GP and allow access to them anyway
+-	 * as VMware does.
+-	 */
+-	if (enable_vmware_backdoor)
+-		eb |= (1u << GP_VECTOR);
+-	if ((vcpu->guest_debug &
+-	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+-	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+-		eb |= 1u << BP_VECTOR;
+-	if (to_vmx(vcpu)->rmode.vm86_active)
+-		eb = ~0;
+-	if (enable_ept)
+-		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
+-
+-	/* When we are running a nested L2 guest and L1 specified for it a
+-	 * certain exception bitmap, we must trap the same exceptions and pass
+-	 * them to L1. When running L2, we will only handle the exceptions
+-	 * specified above if L1 did not want them.
+-	 */
+-	if (is_guest_mode(vcpu))
+-		eb |= get_vmcs12(vcpu)->exception_bitmap;
+-
+-	vmcs_write32(EXCEPTION_BITMAP, eb);
+-}
+-
+-/*
+- * Check if MSR is intercepted for currently loaded MSR bitmap.
+- */
+-static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
+-{
+-	unsigned long *msr_bitmap;
+-	int f = sizeof(unsigned long);
+-
+-	if (!cpu_has_vmx_msr_bitmap())
+-		return true;
+-
+-	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
+-
+-	if (msr <= 0x1fff) {
+-		return !!test_bit(msr, msr_bitmap + 0x800 / f);
+-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+-		msr &= 0x1fff;
+-		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+-	}
+-
+-	return true;
+-}
+-
+-/*
+- * Check if MSR is intercepted for L01 MSR bitmap.
+- */
+-static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
+-{
+-	unsigned long *msr_bitmap;
+-	int f = sizeof(unsigned long);
+-
+-	if (!cpu_has_vmx_msr_bitmap())
+-		return true;
+-
+-	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
+-
+-	if (msr <= 0x1fff) {
+-		return !!test_bit(msr, msr_bitmap + 0x800 / f);
+-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+-		msr &= 0x1fff;
+-		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+-	}
+-
+-	return true;
+-}
+-
+-static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+-		unsigned long entry, unsigned long exit)
+-{
+-	vm_entry_controls_clearbit(vmx, entry);
+-	vm_exit_controls_clearbit(vmx, exit);
+-}
+-
+-static int find_msr(struct vmx_msrs *m, unsigned int msr)
+-{
+-	unsigned int i;
+-
+-	for (i = 0; i < m->nr; ++i) {
+-		if (m->val[i].index == msr)
+-			return i;
+-	}
+-	return -ENOENT;
+-}
+-
+-static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+-{
+-	int i;
+-	struct msr_autoload *m = &vmx->msr_autoload;
+-
+-	switch (msr) {
+-	case MSR_EFER:
+-		if (cpu_has_load_ia32_efer) {
+-			clear_atomic_switch_msr_special(vmx,
+-					VM_ENTRY_LOAD_IA32_EFER,
+-					VM_EXIT_LOAD_IA32_EFER);
+-			return;
+-		}
+-		break;
+-	case MSR_CORE_PERF_GLOBAL_CTRL:
+-		if (cpu_has_load_perf_global_ctrl) {
+-			clear_atomic_switch_msr_special(vmx,
+-					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+-					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+-			return;
+-		}
+-		break;
+-	}
+-	i = find_msr(&m->guest, msr);
+-	if (i < 0)
+-		goto skip_guest;
+-	--m->guest.nr;
+-	m->guest.val[i] = m->guest.val[m->guest.nr];
+-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+-
+-skip_guest:
+-	i = find_msr(&m->host, msr);
+-	if (i < 0)
+-		return;
+-
+-	--m->host.nr;
+-	m->host.val[i] = m->host.val[m->host.nr];
+-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+-}
+-
+-static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+-		unsigned long entry, unsigned long exit,
+-		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+-		u64 guest_val, u64 host_val)
+-{
+-	vmcs_write64(guest_val_vmcs, guest_val);
+-	vmcs_write64(host_val_vmcs, host_val);
+-	vm_entry_controls_setbit(vmx, entry);
+-	vm_exit_controls_setbit(vmx, exit);
+-}
+-
+-static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+-				  u64 guest_val, u64 host_val, bool entry_only)
+-{
+-	int i, j = 0;
+-	struct msr_autoload *m = &vmx->msr_autoload;
+-
+-	switch (msr) {
+-	case MSR_EFER:
+-		if (cpu_has_load_ia32_efer) {
+-			add_atomic_switch_msr_special(vmx,
+-					VM_ENTRY_LOAD_IA32_EFER,
+-					VM_EXIT_LOAD_IA32_EFER,
+-					GUEST_IA32_EFER,
+-					HOST_IA32_EFER,
+-					guest_val, host_val);
+-			return;
+-		}
+-		break;
+-	case MSR_CORE_PERF_GLOBAL_CTRL:
+-		if (cpu_has_load_perf_global_ctrl) {
+-			add_atomic_switch_msr_special(vmx,
+-					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+-					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+-					GUEST_IA32_PERF_GLOBAL_CTRL,
+-					HOST_IA32_PERF_GLOBAL_CTRL,
+-					guest_val, host_val);
+-			return;
+-		}
+-		break;
+-	case MSR_IA32_PEBS_ENABLE:
+-		/* PEBS needs a quiescent period after being disabled (to write
+-		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
+-		 * provide that period, so a CPU could write host's record into
+-		 * guest's memory.
+-		 */
+-		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
+-	}
+-
+-	i = find_msr(&m->guest, msr);
+-	if (!entry_only)
+-		j = find_msr(&m->host, msr);
+-
+-	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
+-		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
+-		printk_once(KERN_WARNING "Not enough msr switch entries. "
+-				"Can't add msr %x\n", msr);
+-		return;
+-	}
+-	if (i < 0) {
+-		i = m->guest.nr++;
+-		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+-	}
+-	m->guest.val[i].index = msr;
+-	m->guest.val[i].value = guest_val;
+-
+-	if (entry_only)
+-		return;
+-
+-	if (j < 0) {
+-		j = m->host.nr++;
+-		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+-	}
+-	m->host.val[j].index = msr;
+-	m->host.val[j].value = host_val;
+-}
+-
+-static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
+-{
+-	u64 guest_efer = vmx->vcpu.arch.efer;
+-	u64 ignore_bits = 0;
+-
+-	/* Shadow paging assumes NX to be available.  */
+-	if (!enable_ept)
+-		guest_efer |= EFER_NX;
+-
+-	/*
+-	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
+-	 */
+-	ignore_bits |= EFER_SCE;
+-#ifdef CONFIG_X86_64
+-	ignore_bits |= EFER_LMA | EFER_LME;
+-	/* SCE is meaningful only in long mode on Intel */
+-	if (guest_efer & EFER_LMA)
+-		ignore_bits &= ~(u64)EFER_SCE;
+-#endif
+-
+-	clear_atomic_switch_msr(vmx, MSR_EFER);
+-
+-	/*
+-	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
+-	 * On CPUs that support "load IA32_EFER", always switch EFER
+-	 * atomically, since it's faster than switching it manually.
+-	 */
+-	if (cpu_has_load_ia32_efer ||
+-	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+-		if (!(guest_efer & EFER_LMA))
+-			guest_efer &= ~EFER_LME;
+-		if (guest_efer != host_efer)
+-			add_atomic_switch_msr(vmx, MSR_EFER,
+-					      guest_efer, host_efer, false);
+-		return false;
+-	} else {
+-		guest_efer &= ~ignore_bits;
+-		guest_efer |= host_efer & ignore_bits;
+-
+-		vmx->guest_msrs[efer_offset].data = guest_efer;
+-		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
+-
+-		return true;
+-	}
+-}
+-
+-#ifdef CONFIG_X86_32
+-/*
+- * On 32-bit kernels, VM exits still load the FS and GS bases from the
+- * VMCS rather than the segment table.  KVM uses this helper to figure
+- * out the current bases to poke them into the VMCS before entry.
+- */
+-static unsigned long segment_base(u16 selector)
+-{
+-	struct desc_struct *table;
+-	unsigned long v;
+-
+-	if (!(selector & ~SEGMENT_RPL_MASK))
+-		return 0;
+-
+-	table = get_current_gdt_ro();
+-
+-	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
+-		u16 ldt_selector = kvm_read_ldt();
+-
+-		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
+-			return 0;
+-
+-		table = (struct desc_struct *)segment_base(ldt_selector);
+-	}
+-	v = get_desc_base(&table[selector >> 3]);
+-	return v;
+-}
+-#endif
+-
+-static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmcs_host_state *host_state;
+-#ifdef CONFIG_X86_64
+-	int cpu = raw_smp_processor_id();
+-#endif
+-	unsigned long fs_base, gs_base;
+-	u16 fs_sel, gs_sel;
+-	int i;
+-
+-	vmx->req_immediate_exit = false;
+-
+-	/*
+-	 * Note that guest MSRs to be saved/restored can also be changed
+-	 * when guest state is loaded. This happens when guest transitions
+-	 * to/from long-mode by setting MSR_EFER.LMA.
+-	 */
+-	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
+-		vmx->guest_msrs_dirty = false;
+-		for (i = 0; i < vmx->save_nmsrs; ++i)
+-			kvm_set_shared_msr(vmx->guest_msrs[i].index,
+-					   vmx->guest_msrs[i].data,
+-					   vmx->guest_msrs[i].mask);
+-
+-	}
+-
+-	if (vmx->loaded_cpu_state)
+-		return;
+-
+-	vmx->loaded_cpu_state = vmx->loaded_vmcs;
+-	host_state = &vmx->loaded_cpu_state->host_state;
+-
+-	/*
+-	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
+-	 * allow segment selectors with cpl > 0 or ti == 1.
+-	 */
+-	host_state->ldt_sel = kvm_read_ldt();
+-
+-#ifdef CONFIG_X86_64
+-	savesegment(ds, host_state->ds_sel);
+-	savesegment(es, host_state->es_sel);
+-
+-	gs_base = cpu_kernelmode_gs_base(cpu);
+-	if (likely(is_64bit_mm(current->mm))) {
+-		save_fsgs_for_kvm();
+-		fs_sel = current->thread.fsindex;
+-		gs_sel = current->thread.gsindex;
+-		fs_base = current->thread.fsbase;
+-		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
+-	} else {
+-		savesegment(fs, fs_sel);
+-		savesegment(gs, gs_sel);
+-		fs_base = read_msr(MSR_FS_BASE);
+-		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
+-	}
+-
+-	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+-#else
+-	savesegment(fs, fs_sel);
+-	savesegment(gs, gs_sel);
+-	fs_base = segment_base(fs_sel);
+-	gs_base = segment_base(gs_sel);
+-#endif
+-
+-	if (unlikely(fs_sel != host_state->fs_sel)) {
+-		if (!(fs_sel & 7))
+-			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
+-		else
+-			vmcs_write16(HOST_FS_SELECTOR, 0);
+-		host_state->fs_sel = fs_sel;
+-	}
+-	if (unlikely(gs_sel != host_state->gs_sel)) {
+-		if (!(gs_sel & 7))
+-			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
+-		else
+-			vmcs_write16(HOST_GS_SELECTOR, 0);
+-		host_state->gs_sel = gs_sel;
+-	}
+-	if (unlikely(fs_base != host_state->fs_base)) {
+-		vmcs_writel(HOST_FS_BASE, fs_base);
+-		host_state->fs_base = fs_base;
+-	}
+-	if (unlikely(gs_base != host_state->gs_base)) {
+-		vmcs_writel(HOST_GS_BASE, gs_base);
+-		host_state->gs_base = gs_base;
+-	}
+-}
+-
+-static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
+-{
+-	struct vmcs_host_state *host_state;
+-
+-	if (!vmx->loaded_cpu_state)
+-		return;
+-
+-	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
+-	host_state = &vmx->loaded_cpu_state->host_state;
+-
+-	++vmx->vcpu.stat.host_state_reload;
+-	vmx->loaded_cpu_state = NULL;
+-
+-#ifdef CONFIG_X86_64
+-	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+-#endif
+-	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
+-		kvm_load_ldt(host_state->ldt_sel);
+-#ifdef CONFIG_X86_64
+-		load_gs_index(host_state->gs_sel);
+-#else
+-		loadsegment(gs, host_state->gs_sel);
+-#endif
+-	}
+-	if (host_state->fs_sel & 7)
+-		loadsegment(fs, host_state->fs_sel);
+-#ifdef CONFIG_X86_64
+-	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
+-		loadsegment(ds, host_state->ds_sel);
+-		loadsegment(es, host_state->es_sel);
+-	}
+-#endif
+-	invalidate_tss_limit();
+-#ifdef CONFIG_X86_64
+-	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+-#endif
+-	load_fixmap_gdt(raw_smp_processor_id());
+-}
+-
+-#ifdef CONFIG_X86_64
+-static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
+-{
+-	preempt_disable();
+-	if (vmx->loaded_cpu_state)
+-		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+-	preempt_enable();
+-	return vmx->msr_guest_kernel_gs_base;
+-}
+-
+-static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
+-{
+-	preempt_disable();
+-	if (vmx->loaded_cpu_state)
+-		wrmsrl(MSR_KERNEL_GS_BASE, data);
+-	preempt_enable();
+-	vmx->msr_guest_kernel_gs_base = data;
+-}
+-#endif
+-
+-static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
+-{
+-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+-	struct pi_desc old, new;
+-	unsigned int dest;
+-
+-	/*
+-	 * In case of hot-plug or hot-unplug, we may have to undo
+-	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
+-	 * always keep PI.NDST up to date for simplicity: it makes the
+-	 * code easier, and CPU migration is not a fast path.
+-	 */
+-	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
+-		return;
+-
+-	/*
+-	 * First handle the simple case where no cmpxchg is necessary; just
+-	 * allow posting non-urgent interrupts.
+-	 *
+-	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
+-	 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
+-	 * expects the VCPU to be on the blocked_vcpu_list that matches
+-	 * PI.NDST.
+-	 */
+-	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
+-	    vcpu->cpu == cpu) {
+-		pi_clear_sn(pi_desc);
+-		return;
+-	}
+-
+-	/* The full case.  */
+-	do {
+-		old.control = new.control = pi_desc->control;
+-
+-		dest = cpu_physical_id(cpu);
+-
+-		if (x2apic_enabled())
+-			new.ndst = dest;
+-		else
+-			new.ndst = (dest << 8) & 0xFF00;
+-
+-		new.sn = 0;
+-	} while (cmpxchg64(&pi_desc->control, old.control,
+-			   new.control) != old.control);
+-}
+-
+-static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
+-{
+-	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
+-	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
+-}
+-
+-/*
+- * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+- * vcpu mutex is already taken.
+- */
+-static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
+-
+-	if (!already_loaded) {
+-		loaded_vmcs_clear(vmx->loaded_vmcs);
+-		local_irq_disable();
+-
+-		/*
+-		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
+-		 * this cpu's percpu list, otherwise it may not yet be deleted
+-		 * from its previous cpu's percpu list.  Pairs with the
+-		 * smb_wmb() in __loaded_vmcs_clear().
+-		 */
+-		smp_rmb();
+-
+-		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+-			 &per_cpu(loaded_vmcss_on_cpu, cpu));
+-		local_irq_enable();
+-	}
+-
+-	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+-		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+-		vmcs_load(vmx->loaded_vmcs->vmcs);
+-		indirect_branch_prediction_barrier();
+-	}
+-
+-	if (!already_loaded) {
+-		void *gdt = get_current_gdt_ro();
+-		unsigned long sysenter_esp;
+-
+-		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+-
+-		/*
+-		 * Linux uses per-cpu TSS and GDT, so set these when switching
+-		 * processors.  See 22.2.4.
+-		 */
+-		vmcs_writel(HOST_TR_BASE,
+-			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
+-		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
+-
+-		/*
+-		 * VM exits change the host TR limit to 0x67 after a VM
+-		 * exit.  This is okay, since 0x67 covers everything except
+-		 * the IO bitmap and have have code to handle the IO bitmap
+-		 * being lost after a VM exit.
+-		 */
+-		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
+-
+-		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+-		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+-
+-		vmx->loaded_vmcs->cpu = cpu;
+-	}
+-
+-	/* Setup TSC multiplier */
+-	if (kvm_has_tsc_control &&
+-	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
+-		decache_tsc_multiplier(vmx);
+-
+-	vmx_vcpu_pi_load(vcpu, cpu);
+-	vmx->host_pkru = read_pkru();
+-	vmx->host_debugctlmsr = get_debugctlmsr();
+-}
+-
+-static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
+-{
+-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+-
+-	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+-		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
+-		!kvm_vcpu_apicv_active(vcpu))
+-		return;
+-
+-	/* Set SN when the vCPU is preempted */
+-	if (vcpu->preempted)
+-		pi_set_sn(pi_desc);
+-}
+-
+-static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+-{
+-	vmx_vcpu_pi_put(vcpu);
+-
+-	vmx_prepare_switch_to_host(to_vmx(vcpu));
+-}
+-
+-static bool emulation_required(struct kvm_vcpu *vcpu)
+-{
+-	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
+-}
+-
+-static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+-
+-/*
+- * Return the cr0 value that a nested guest would read. This is a combination
+- * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+- * its hypervisor (cr0_read_shadow).
+- */
+-static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+-{
+-	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+-		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+-}
+-static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+-{
+-	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+-		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+-}
+-
+-static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long rflags, save_rflags;
+-
+-	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
+-		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+-		rflags = vmcs_readl(GUEST_RFLAGS);
+-		if (to_vmx(vcpu)->rmode.vm86_active) {
+-			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+-			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
+-			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+-		}
+-		to_vmx(vcpu)->rflags = rflags;
+-	}
+-	return to_vmx(vcpu)->rflags;
+-}
+-
+-static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+-{
+-	unsigned long old_rflags = vmx_get_rflags(vcpu);
+-
+-	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+-	to_vmx(vcpu)->rflags = rflags;
+-	if (to_vmx(vcpu)->rmode.vm86_active) {
+-		to_vmx(vcpu)->rmode.save_rflags = rflags;
+-		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+-	}
+-	vmcs_writel(GUEST_RFLAGS, rflags);
+-
+-	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
+-		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
+-}
+-
+-static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+-{
+-	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+-	int ret = 0;
+-
+-	if (interruptibility & GUEST_INTR_STATE_STI)
+-		ret |= KVM_X86_SHADOW_INT_STI;
+-	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+-		ret |= KVM_X86_SHADOW_INT_MOV_SS;
+-
+-	return ret;
+-}
+-
+-static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+-{
+-	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+-	u32 interruptibility = interruptibility_old;
+-
+-	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+-
+-	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+-		interruptibility |= GUEST_INTR_STATE_MOV_SS;
+-	else if (mask & KVM_X86_SHADOW_INT_STI)
+-		interruptibility |= GUEST_INTR_STATE_STI;
+-
+-	if ((interruptibility != interruptibility_old))
+-		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+-}
+-
+-static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long rip;
+-
+-	rip = kvm_rip_read(vcpu);
+-	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+-	kvm_rip_write(vcpu, rip);
+-
+-	/* skipping an emulated instruction also counts */
+-	vmx_set_interrupt_shadow(vcpu, 0);
+-}
+-
+-static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
+-					       unsigned long exit_qual)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	unsigned int nr = vcpu->arch.exception.nr;
+-	u32 intr_info = nr | INTR_INFO_VALID_MASK;
+-
+-	if (vcpu->arch.exception.has_error_code) {
+-		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
+-		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+-	}
+-
+-	if (kvm_exception_is_soft(nr))
+-		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+-	else
+-		intr_info |= INTR_TYPE_HARD_EXCEPTION;
+-
+-	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
+-	    vmx_get_nmi_mask(vcpu))
+-		intr_info |= INTR_INFO_UNBLOCK_NMI;
+-
+-	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
+-}
+-
+-/*
+- * KVM wants to inject page-faults which it got to the guest. This function
+- * checks whether in a nested guest, we need to inject them to L1 or L2.
+- */
+-static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	unsigned int nr = vcpu->arch.exception.nr;
+-
+-	if (nr == PF_VECTOR) {
+-		if (vcpu->arch.exception.nested_apf) {
+-			*exit_qual = vcpu->arch.apf.nested_apf_token;
+-			return 1;
+-		}
+-		/*
+-		 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
+-		 * The fix is to add the ancillary datum (CR2 or DR6) to structs
+-		 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
+-		 * can be written only when inject_pending_event runs.  This should be
+-		 * conditional on a new capability---if the capability is disabled,
+-		 * kvm_multiple_exception would write the ancillary information to
+-		 * CR2 or DR6, for backwards ABI-compatibility.
+-		 */
+-		if (nested_vmx_is_page_fault_vmexit(vmcs12,
+-						    vcpu->arch.exception.error_code)) {
+-			*exit_qual = vcpu->arch.cr2;
+-			return 1;
+-		}
+-	} else {
+-		if (vmcs12->exception_bitmap & (1u << nr)) {
+-			if (nr == DB_VECTOR) {
+-				*exit_qual = vcpu->arch.dr6;
+-				*exit_qual &= ~(DR6_FIXED_1 | DR6_BT);
+-				*exit_qual ^= DR6_RTM;
+-			} else {
+-				*exit_qual = 0;
+-			}
+-			return 1;
+-		}
+-	}
+-
+-	return 0;
+-}
+-
+-static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
+-{
+-	/*
+-	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
+-	 * explicitly skip the instruction because if the HLT state is set,
+-	 * then the instruction is already executing and RIP has already been
+-	 * advanced.
+-	 */
+-	if (kvm_hlt_in_guest(vcpu->kvm) &&
+-			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
+-		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+-}
+-
+-static void vmx_queue_exception(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned nr = vcpu->arch.exception.nr;
+-	bool has_error_code = vcpu->arch.exception.has_error_code;
+-	u32 error_code = vcpu->arch.exception.error_code;
+-	u32 intr_info = nr | INTR_INFO_VALID_MASK;
+-
+-	if (has_error_code) {
+-		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
+-		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+-	}
+-
+-	if (vmx->rmode.vm86_active) {
+-		int inc_eip = 0;
+-		if (kvm_exception_is_soft(nr))
+-			inc_eip = vcpu->arch.event_exit_inst_len;
+-		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
+-			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+-		return;
+-	}
+-
+-	WARN_ON_ONCE(vmx->emulation_required);
+-
+-	if (kvm_exception_is_soft(nr)) {
+-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+-			     vmx->vcpu.arch.event_exit_inst_len);
+-		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+-	} else
+-		intr_info |= INTR_TYPE_HARD_EXCEPTION;
+-
+-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+-
+-	vmx_clear_hlt(vcpu);
+-}
+-
+-static bool vmx_rdtscp_supported(void)
+-{
+-	return cpu_has_vmx_rdtscp();
+-}
+-
+-static bool vmx_invpcid_supported(void)
+-{
+-	return cpu_has_vmx_invpcid();
+-}
+-
+-/*
+- * Swap MSR entry in host/guest MSR entry array.
+- */
+-static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
+-{
+-	struct shared_msr_entry tmp;
+-
+-	tmp = vmx->guest_msrs[to];
+-	vmx->guest_msrs[to] = vmx->guest_msrs[from];
+-	vmx->guest_msrs[from] = tmp;
+-}
+-
+-/*
+- * Set up the vmcs to automatically save and restore system
+- * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
+- * mode, as fiddling with msrs is very expensive.
+- */
+-static void setup_msrs(struct vcpu_vmx *vmx)
+-{
+-	int save_nmsrs, index;
+-
+-	save_nmsrs = 0;
+-#ifdef CONFIG_X86_64
+-	if (is_long_mode(&vmx->vcpu)) {
+-		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
+-		if (index >= 0)
+-			move_msr_up(vmx, index, save_nmsrs++);
+-		index = __find_msr_index(vmx, MSR_LSTAR);
+-		if (index >= 0)
+-			move_msr_up(vmx, index, save_nmsrs++);
+-		index = __find_msr_index(vmx, MSR_CSTAR);
+-		if (index >= 0)
+-			move_msr_up(vmx, index, save_nmsrs++);
+-		/*
+-		 * MSR_STAR is only needed on long mode guests, and only
+-		 * if efer.sce is enabled.
+-		 */
+-		index = __find_msr_index(vmx, MSR_STAR);
+-		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
+-			move_msr_up(vmx, index, save_nmsrs++);
+-	}
+-#endif
+-	index = __find_msr_index(vmx, MSR_EFER);
+-	if (index >= 0 && update_transition_efer(vmx, index))
+-		move_msr_up(vmx, index, save_nmsrs++);
+-	index = __find_msr_index(vmx, MSR_TSC_AUX);
+-	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
+-		move_msr_up(vmx, index, save_nmsrs++);
+-
+-	vmx->save_nmsrs = save_nmsrs;
+-	vmx->guest_msrs_dirty = true;
+-
+-	if (cpu_has_vmx_msr_bitmap())
+-		vmx_update_msr_bitmap(&vmx->vcpu);
+-}
+-
+-static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-
+-	if (is_guest_mode(vcpu) &&
+-	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
+-		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
+-
+-	return vcpu->arch.tsc_offset;
+-}
+-
+-static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+-{
+-	u64 active_offset = offset;
+-	if (is_guest_mode(vcpu)) {
+-		/*
+-		 * We're here if L1 chose not to trap WRMSR to TSC. According
+-		 * to the spec, this should set L1's TSC; The offset that L1
+-		 * set for L2 remains unchanged, and still needs to be added
+-		 * to the newly set TSC to get L2's TSC.
+-		 */
+-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-		if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING))
+-			active_offset += vmcs12->tsc_offset;
+-	} else {
+-		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+-					   vmcs_read64(TSC_OFFSET), offset);
+-	}
+-
+-	vmcs_write64(TSC_OFFSET, active_offset);
+-	return active_offset;
+-}
+-
+-/*
+- * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+- * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+- * all guests if the "nested" module option is off, and can also be disabled
+- * for a single guest by disabling its VMX cpuid bit.
+- */
+-static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+-{
+-	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
+-}
+-
+-/*
+- * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+- * returned for the various VMX controls MSRs when nested VMX is enabled.
+- * The same values should also be used to verify that vmcs12 control fields are
+- * valid during nested entry from L1 to L2.
+- * Each of these control msrs has a low and high 32-bit half: A low bit is on
+- * if the corresponding bit in the (32-bit) control field *must* be on, and a
+- * bit in the high half is on if the corresponding bit in the control field
+- * may be on. See also vmx_control_verify().
+- */
+-static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
+-{
+-	if (!nested) {
+-		memset(msrs, 0, sizeof(*msrs));
+-		return;
+-	}
+-
+-	/*
+-	 * Note that as a general rule, the high half of the MSRs (bits in
+-	 * the control fields which may be 1) should be initialized by the
+-	 * intersection of the underlying hardware's MSR (i.e., features which
+-	 * can be supported) and the list of features we want to expose -
+-	 * because they are known to be properly supported in our code.
+-	 * Also, usually, the low half of the MSRs (bits which must be 1) can
+-	 * be set to 0, meaning that L1 may turn off any of these bits. The
+-	 * reason is that if one of these bits is necessary, it will appear
+-	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+-	 * fields of vmcs01 and vmcs02, will turn these bits off - and
+-	 * nested_vmx_exit_reflected() will not pass related exits to L1.
+-	 * These rules have exceptions below.
+-	 */
+-
+-	/* pin-based controls */
+-	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+-		msrs->pinbased_ctls_low,
+-		msrs->pinbased_ctls_high);
+-	msrs->pinbased_ctls_low |=
+-		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+-	msrs->pinbased_ctls_high &=
+-		PIN_BASED_EXT_INTR_MASK |
+-		PIN_BASED_NMI_EXITING |
+-		PIN_BASED_VIRTUAL_NMIS |
+-		(apicv ? PIN_BASED_POSTED_INTR : 0);
+-	msrs->pinbased_ctls_high |=
+-		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+-		PIN_BASED_VMX_PREEMPTION_TIMER;
+-
+-	/* exit controls */
+-	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+-		msrs->exit_ctls_low,
+-		msrs->exit_ctls_high);
+-	msrs->exit_ctls_low =
+-		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+-
+-	msrs->exit_ctls_high &=
+-#ifdef CONFIG_X86_64
+-		VM_EXIT_HOST_ADDR_SPACE_SIZE |
+-#endif
+-		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+-	msrs->exit_ctls_high |=
+-		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+-		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+-		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+-
+-	/* We support free control of debug control saving. */
+-	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+-
+-	/* entry controls */
+-	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+-		msrs->entry_ctls_low,
+-		msrs->entry_ctls_high);
+-	msrs->entry_ctls_low =
+-		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+-	msrs->entry_ctls_high &=
+-#ifdef CONFIG_X86_64
+-		VM_ENTRY_IA32E_MODE |
+-#endif
+-		VM_ENTRY_LOAD_IA32_PAT;
+-	msrs->entry_ctls_high |=
+-		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+-
+-	/* We support free control of debug control loading. */
+-	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+-
+-	/* cpu-based controls */
+-	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+-		msrs->procbased_ctls_low,
+-		msrs->procbased_ctls_high);
+-	msrs->procbased_ctls_low =
+-		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+-	msrs->procbased_ctls_high &=
+-		CPU_BASED_VIRTUAL_INTR_PENDING |
+-		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+-		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+-		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+-		CPU_BASED_CR3_STORE_EXITING |
+-#ifdef CONFIG_X86_64
+-		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+-#endif
+-		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+-		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
+-		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
+-		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
+-		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+-	/*
+-	 * We can allow some features even when not supported by the
+-	 * hardware. For example, L1 can specify an MSR bitmap - and we
+-	 * can use it to avoid exits to L1 - even when L0 runs L2
+-	 * without MSR bitmaps.
+-	 */
+-	msrs->procbased_ctls_high |=
+-		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+-		CPU_BASED_USE_MSR_BITMAPS;
+-
+-	/* We support free control of CR3 access interception. */
+-	msrs->procbased_ctls_low &=
+-		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+-
+-	/*
+-	 * secondary cpu-based controls.  Do not include those that
+-	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
+-	 */
+-	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
+-		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+-		      msrs->secondary_ctls_low,
+-		      msrs->secondary_ctls_high);
+-
+-	msrs->secondary_ctls_low = 0;
+-	msrs->secondary_ctls_high &=
+-		SECONDARY_EXEC_DESC |
+-		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+-		SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+-		SECONDARY_EXEC_WBINVD_EXITING;
+-
+-	/*
+-	 * We can emulate "VMCS shadowing," even if the hardware
+-	 * doesn't support it.
+-	 */
+-	msrs->secondary_ctls_high |=
+-		SECONDARY_EXEC_SHADOW_VMCS;
+-
+-	if (enable_ept) {
+-		/* nested EPT: emulate EPT also to L1 */
+-		msrs->secondary_ctls_high |=
+-			SECONDARY_EXEC_ENABLE_EPT;
+-		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+-			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
+-		if (cpu_has_vmx_ept_execute_only())
+-			msrs->ept_caps |=
+-				VMX_EPT_EXECUTE_ONLY_BIT;
+-		msrs->ept_caps &= vmx_capability.ept;
+-		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
+-			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
+-			VMX_EPT_1GB_PAGE_BIT;
+-		if (enable_ept_ad_bits) {
+-			msrs->secondary_ctls_high |=
+-				SECONDARY_EXEC_ENABLE_PML;
+-			msrs->ept_caps |= VMX_EPT_AD_BIT;
+-		}
+-	}
+-
+-	if (cpu_has_vmx_vmfunc()) {
+-		msrs->secondary_ctls_high |=
+-			SECONDARY_EXEC_ENABLE_VMFUNC;
+-		/*
+-		 * Advertise EPTP switching unconditionally
+-		 * since we emulate it
+-		 */
+-		if (enable_ept)
+-			msrs->vmfunc_controls =
+-				VMX_VMFUNC_EPTP_SWITCHING;
+-	}
+-
+-	/*
+-	 * Old versions of KVM use the single-context version without
+-	 * checking for support, so declare that it is supported even
+-	 * though it is treated as global context.  The alternative is
+-	 * not failing the single-context invvpid, and it is worse.
+-	 */
+-	if (enable_vpid) {
+-		msrs->secondary_ctls_high |=
+-			SECONDARY_EXEC_ENABLE_VPID;
+-		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
+-			VMX_VPID_EXTENT_SUPPORTED_MASK;
+-	}
+-
+-	if (enable_unrestricted_guest)
+-		msrs->secondary_ctls_high |=
+-			SECONDARY_EXEC_UNRESTRICTED_GUEST;
+-
+-	if (flexpriority_enabled)
+-		msrs->secondary_ctls_high |=
+-			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+-
+-	/* miscellaneous data */
+-	rdmsr(MSR_IA32_VMX_MISC,
+-		msrs->misc_low,
+-		msrs->misc_high);
+-	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
+-	msrs->misc_low |=
+-		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+-		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+-		VMX_MISC_ACTIVITY_HLT;
+-	msrs->misc_high = 0;
+-
+-	/*
+-	 * This MSR reports some information about VMX support. We
+-	 * should return information about the VMX we emulate for the
+-	 * guest, and the VMCS structure we give it - not about the
+-	 * VMX support of the underlying hardware.
+-	 */
+-	msrs->basic =
+-		VMCS12_REVISION |
+-		VMX_BASIC_TRUE_CTLS |
+-		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+-		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+-
+-	if (cpu_has_vmx_basic_inout())
+-		msrs->basic |= VMX_BASIC_INOUT;
+-
+-	/*
+-	 * These MSRs specify bits which the guest must keep fixed on
+-	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+-	 * We picked the standard core2 setting.
+-	 */
+-#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+-#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
+-	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
+-	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
+-
+-	/* These MSRs specify bits which the guest must keep fixed off. */
+-	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
+-	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+-
+-	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
+-	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
+-}
+-
+-/*
+- * if fixed0[i] == 1: val[i] must be 1
+- * if fixed1[i] == 0: val[i] must be 0
+- */
+-static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
+-{
+-	return ((val & fixed1) | fixed0) == val;
+-}
+-
+-static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+-{
+-	return fixed_bits_valid(control, low, high);
+-}
+-
+-static inline u64 vmx_control_msr(u32 low, u32 high)
+-{
+-	return low | ((u64)high << 32);
+-}
+-
+-static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
+-{
+-	superset &= mask;
+-	subset &= mask;
+-
+-	return (superset | subset) == superset;
+-}
+-
+-static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
+-{
+-	const u64 feature_and_reserved =
+-		/* feature (except bit 48; see below) */
+-		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
+-		/* reserved */
+-		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
+-	u64 vmx_basic = vmx->nested.msrs.basic;
+-
+-	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
+-		return -EINVAL;
+-
+-	/*
+-	 * KVM does not emulate a version of VMX that constrains physical
+-	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
+-	 */
+-	if (data & BIT_ULL(48))
+-		return -EINVAL;
+-
+-	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
+-	    vmx_basic_vmcs_revision_id(data))
+-		return -EINVAL;
+-
+-	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
+-		return -EINVAL;
+-
+-	vmx->nested.msrs.basic = data;
+-	return 0;
+-}
+-
+-static int
+-vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+-{
+-	u64 supported;
+-	u32 *lowp, *highp;
+-
+-	switch (msr_index) {
+-	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+-		lowp = &vmx->nested.msrs.pinbased_ctls_low;
+-		highp = &vmx->nested.msrs.pinbased_ctls_high;
+-		break;
+-	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+-		lowp = &vmx->nested.msrs.procbased_ctls_low;
+-		highp = &vmx->nested.msrs.procbased_ctls_high;
+-		break;
+-	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+-		lowp = &vmx->nested.msrs.exit_ctls_low;
+-		highp = &vmx->nested.msrs.exit_ctls_high;
+-		break;
+-	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+-		lowp = &vmx->nested.msrs.entry_ctls_low;
+-		highp = &vmx->nested.msrs.entry_ctls_high;
+-		break;
+-	case MSR_IA32_VMX_PROCBASED_CTLS2:
+-		lowp = &vmx->nested.msrs.secondary_ctls_low;
+-		highp = &vmx->nested.msrs.secondary_ctls_high;
+-		break;
+-	default:
+-		BUG();
+-	}
+-
+-	supported = vmx_control_msr(*lowp, *highp);
+-
+-	/* Check must-be-1 bits are still 1. */
+-	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
+-		return -EINVAL;
+-
+-	/* Check must-be-0 bits are still 0. */
+-	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
+-		return -EINVAL;
+-
+-	*lowp = data;
+-	*highp = data >> 32;
+-	return 0;
+-}
+-
+-static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
+-{
+-	const u64 feature_and_reserved_bits =
+-		/* feature */
+-		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
+-		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
+-		/* reserved */
+-		GENMASK_ULL(13, 9) | BIT_ULL(31);
+-	u64 vmx_misc;
+-
+-	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
+-				   vmx->nested.msrs.misc_high);
+-
+-	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
+-		return -EINVAL;
+-
+-	if ((vmx->nested.msrs.pinbased_ctls_high &
+-	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
+-	    vmx_misc_preemption_timer_rate(data) !=
+-	    vmx_misc_preemption_timer_rate(vmx_misc))
+-		return -EINVAL;
+-
+-	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
+-		return -EINVAL;
+-
+-	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
+-		return -EINVAL;
+-
+-	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
+-		return -EINVAL;
+-
+-	vmx->nested.msrs.misc_low = data;
+-	vmx->nested.msrs.misc_high = data >> 32;
+-
+-	/*
+-	 * If L1 has read-only VM-exit information fields, use the
+-	 * less permissive vmx_vmwrite_bitmap to specify write
+-	 * permissions for the shadow VMCS.
+-	 */
+-	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+-		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+-
+-	return 0;
+-}
+-
+-static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
+-{
+-	u64 vmx_ept_vpid_cap;
+-
+-	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
+-					   vmx->nested.msrs.vpid_caps);
+-
+-	/* Every bit is either reserved or a feature bit. */
+-	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
+-		return -EINVAL;
+-
+-	vmx->nested.msrs.ept_caps = data;
+-	vmx->nested.msrs.vpid_caps = data >> 32;
+-	return 0;
+-}
+-
+-static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+-{
+-	u64 *msr;
+-
+-	switch (msr_index) {
+-	case MSR_IA32_VMX_CR0_FIXED0:
+-		msr = &vmx->nested.msrs.cr0_fixed0;
+-		break;
+-	case MSR_IA32_VMX_CR4_FIXED0:
+-		msr = &vmx->nested.msrs.cr4_fixed0;
+-		break;
+-	default:
+-		BUG();
+-	}
+-
+-	/*
+-	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
+-	 * must be 1 in the restored value.
+-	 */
+-	if (!is_bitwise_subset(data, *msr, -1ULL))
+-		return -EINVAL;
+-
+-	*msr = data;
+-	return 0;
+-}
+-
+-/*
+- * Called when userspace is restoring VMX MSRs.
+- *
+- * Returns 0 on success, non-0 otherwise.
+- */
+-static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	/*
+-	 * Don't allow changes to the VMX capability MSRs while the vCPU
+-	 * is in VMX operation.
+-	 */
+-	if (vmx->nested.vmxon)
+-		return -EBUSY;
+-
+-	switch (msr_index) {
+-	case MSR_IA32_VMX_BASIC:
+-		return vmx_restore_vmx_basic(vmx, data);
+-	case MSR_IA32_VMX_PINBASED_CTLS:
+-	case MSR_IA32_VMX_PROCBASED_CTLS:
+-	case MSR_IA32_VMX_EXIT_CTLS:
+-	case MSR_IA32_VMX_ENTRY_CTLS:
+-		/*
+-		 * The "non-true" VMX capability MSRs are generated from the
+-		 * "true" MSRs, so we do not support restoring them directly.
+-		 *
+-		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
+-		 * should restore the "true" MSRs with the must-be-1 bits
+-		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
+-		 * DEFAULT SETTINGS".
+-		 */
+-		return -EINVAL;
+-	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+-	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+-	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+-	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+-	case MSR_IA32_VMX_PROCBASED_CTLS2:
+-		return vmx_restore_control_msr(vmx, msr_index, data);
+-	case MSR_IA32_VMX_MISC:
+-		return vmx_restore_vmx_misc(vmx, data);
+-	case MSR_IA32_VMX_CR0_FIXED0:
+-	case MSR_IA32_VMX_CR4_FIXED0:
+-		return vmx_restore_fixed0_msr(vmx, msr_index, data);
+-	case MSR_IA32_VMX_CR0_FIXED1:
+-	case MSR_IA32_VMX_CR4_FIXED1:
+-		/*
+-		 * These MSRs are generated based on the vCPU's CPUID, so we
+-		 * do not support restoring them directly.
+-		 */
+-		return -EINVAL;
+-	case MSR_IA32_VMX_EPT_VPID_CAP:
+-		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
+-	case MSR_IA32_VMX_VMCS_ENUM:
+-		vmx->nested.msrs.vmcs_enum = data;
+-		return 0;
+-	default:
+-		/*
+-		 * The rest of the VMX capability MSRs do not support restore.
+-		 */
+-		return -EINVAL;
+-	}
+-}
+-
+-/* Returns 0 on success, non-0 otherwise. */
+-static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
+-{
+-	switch (msr_index) {
+-	case MSR_IA32_VMX_BASIC:
+-		*pdata = msrs->basic;
+-		break;
+-	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+-	case MSR_IA32_VMX_PINBASED_CTLS:
+-		*pdata = vmx_control_msr(
+-			msrs->pinbased_ctls_low,
+-			msrs->pinbased_ctls_high);
+-		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
+-			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+-		break;
+-	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+-	case MSR_IA32_VMX_PROCBASED_CTLS:
+-		*pdata = vmx_control_msr(
+-			msrs->procbased_ctls_low,
+-			msrs->procbased_ctls_high);
+-		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
+-			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+-		break;
+-	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+-	case MSR_IA32_VMX_EXIT_CTLS:
+-		*pdata = vmx_control_msr(
+-			msrs->exit_ctls_low,
+-			msrs->exit_ctls_high);
+-		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
+-			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+-		break;
+-	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+-	case MSR_IA32_VMX_ENTRY_CTLS:
+-		*pdata = vmx_control_msr(
+-			msrs->entry_ctls_low,
+-			msrs->entry_ctls_high);
+-		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
+-			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+-		break;
+-	case MSR_IA32_VMX_MISC:
+-		*pdata = vmx_control_msr(
+-			msrs->misc_low,
+-			msrs->misc_high);
+-		break;
+-	case MSR_IA32_VMX_CR0_FIXED0:
+-		*pdata = msrs->cr0_fixed0;
+-		break;
+-	case MSR_IA32_VMX_CR0_FIXED1:
+-		*pdata = msrs->cr0_fixed1;
+-		break;
+-	case MSR_IA32_VMX_CR4_FIXED0:
+-		*pdata = msrs->cr4_fixed0;
+-		break;
+-	case MSR_IA32_VMX_CR4_FIXED1:
+-		*pdata = msrs->cr4_fixed1;
+-		break;
+-	case MSR_IA32_VMX_VMCS_ENUM:
+-		*pdata = msrs->vmcs_enum;
+-		break;
+-	case MSR_IA32_VMX_PROCBASED_CTLS2:
+-		*pdata = vmx_control_msr(
+-			msrs->secondary_ctls_low,
+-			msrs->secondary_ctls_high);
+-		break;
+-	case MSR_IA32_VMX_EPT_VPID_CAP:
+-		*pdata = msrs->ept_caps |
+-			((u64)msrs->vpid_caps << 32);
+-		break;
+-	case MSR_IA32_VMX_VMFUNC:
+-		*pdata = msrs->vmfunc_controls;
+-		break;
+-	default:
+-		return 1;
+-	}
+-
+-	return 0;
+-}
+-
+-static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
+-						 uint64_t val)
+-{
+-	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
+-
+-	return !(val & ~valid_bits);
+-}
+-
+-static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
+-{
+-	switch (msr->index) {
+-	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+-		if (!nested)
+-			return 1;
+-		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
+-	default:
+-		return 1;
+-	}
+-
+-	return 0;
+-}
+-
+-/*
+- * Reads an msr value (of 'msr_index') into 'pdata'.
+- * Returns 0 on success, non-0 otherwise.
+- * Assumes vcpu_load() was already called.
+- */
+-static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct shared_msr_entry *msr;
+-
+-	switch (msr_info->index) {
+-#ifdef CONFIG_X86_64
+-	case MSR_FS_BASE:
+-		msr_info->data = vmcs_readl(GUEST_FS_BASE);
+-		break;
+-	case MSR_GS_BASE:
+-		msr_info->data = vmcs_readl(GUEST_GS_BASE);
+-		break;
+-	case MSR_KERNEL_GS_BASE:
+-		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
+-		break;
+-#endif
+-	case MSR_EFER:
+-		return kvm_get_msr_common(vcpu, msr_info);
+-	case MSR_IA32_SPEC_CTRL:
+-		if (!msr_info->host_initiated &&
+-		    !guest_has_spec_ctrl_msr(vcpu))
+-			return 1;
+-
+-		msr_info->data = to_vmx(vcpu)->spec_ctrl;
+-		break;
+-	case MSR_IA32_SYSENTER_CS:
+-		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
+-		break;
+-	case MSR_IA32_SYSENTER_EIP:
+-		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
+-		break;
+-	case MSR_IA32_SYSENTER_ESP:
+-		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
+-		break;
+-	case MSR_IA32_BNDCFGS:
+-		if (!kvm_mpx_supported() ||
+-		    (!msr_info->host_initiated &&
+-		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+-			return 1;
+-		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
+-		break;
+-	case MSR_IA32_MCG_EXT_CTL:
+-		if (!msr_info->host_initiated &&
+-		    !(vmx->msr_ia32_feature_control &
+-		      FEATURE_CONTROL_LMCE))
+-			return 1;
+-		msr_info->data = vcpu->arch.mcg_ext_ctl;
+-		break;
+-	case MSR_IA32_FEATURE_CONTROL:
+-		msr_info->data = vmx->msr_ia32_feature_control;
+-		break;
+-	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+-		if (!nested_vmx_allowed(vcpu))
+-			return 1;
+-		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
+-				       &msr_info->data);
+-	case MSR_IA32_XSS:
+-		if (!vmx_xsaves_supported() ||
+-		    (!msr_info->host_initiated &&
+-		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+-		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
+-			return 1;
+-		msr_info->data = vcpu->arch.ia32_xss;
+-		break;
+-	case MSR_TSC_AUX:
+-		if (!msr_info->host_initiated &&
+-		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+-			return 1;
+-		/* Otherwise falls through */
+-	default:
+-		msr = find_msr_entry(vmx, msr_info->index);
+-		if (msr) {
+-			msr_info->data = msr->data;
+-			break;
+-		}
+-		return kvm_get_msr_common(vcpu, msr_info);
+-	}
+-
+-	return 0;
+-}
+-
+-static void vmx_leave_nested(struct kvm_vcpu *vcpu);
+-
+-/*
+- * Writes msr value into into the appropriate "register".
+- * Returns 0 on success, non-0 otherwise.
+- * Assumes vcpu_load() was already called.
+- */
+-static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct shared_msr_entry *msr;
+-	int ret = 0;
+-	u32 msr_index = msr_info->index;
+-	u64 data = msr_info->data;
+-
+-	switch (msr_index) {
+-	case MSR_EFER:
+-		ret = kvm_set_msr_common(vcpu, msr_info);
+-		break;
+-#ifdef CONFIG_X86_64
+-	case MSR_FS_BASE:
+-		vmx_segment_cache_clear(vmx);
+-		vmcs_writel(GUEST_FS_BASE, data);
+-		break;
+-	case MSR_GS_BASE:
+-		vmx_segment_cache_clear(vmx);
+-		vmcs_writel(GUEST_GS_BASE, data);
+-		break;
+-	case MSR_KERNEL_GS_BASE:
+-		vmx_write_guest_kernel_gs_base(vmx, data);
+-		break;
+-#endif
+-	case MSR_IA32_SYSENTER_CS:
+-		vmcs_write32(GUEST_SYSENTER_CS, data);
+-		break;
+-	case MSR_IA32_SYSENTER_EIP:
+-		vmcs_writel(GUEST_SYSENTER_EIP, data);
+-		break;
+-	case MSR_IA32_SYSENTER_ESP:
+-		vmcs_writel(GUEST_SYSENTER_ESP, data);
+-		break;
+-	case MSR_IA32_BNDCFGS:
+-		if (!kvm_mpx_supported() ||
+-		    (!msr_info->host_initiated &&
+-		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+-			return 1;
+-		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
+-		    (data & MSR_IA32_BNDCFGS_RSVD))
+-			return 1;
+-		vmcs_write64(GUEST_BNDCFGS, data);
+-		break;
+-	case MSR_IA32_SPEC_CTRL:
+-		if (!msr_info->host_initiated &&
+-		    !guest_has_spec_ctrl_msr(vcpu))
+-			return 1;
+-
+-		/* The STIBP bit doesn't fault even if it's not advertised */
+-		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
+-			return 1;
+-
+-		vmx->spec_ctrl = data;
+-
+-		if (!data)
+-			break;
+-
+-		/*
+-		 * For non-nested:
+-		 * When it's written (to non-zero) for the first time, pass
+-		 * it through.
+-		 *
+-		 * For nested:
+-		 * The handling of the MSR bitmap for L2 guests is done in
+-		 * nested_vmx_merge_msr_bitmap. We should not touch the
+-		 * vmcs02.msr_bitmap here since it gets completely overwritten
+-		 * in the merging. We update the vmcs01 here for L1 as well
+-		 * since it will end up touching the MSR anyway now.
+-		 */
+-		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
+-					      MSR_IA32_SPEC_CTRL,
+-					      MSR_TYPE_RW);
+-		break;
+-	case MSR_IA32_PRED_CMD:
+-		if (!msr_info->host_initiated &&
+-		    !guest_has_pred_cmd_msr(vcpu))
+-			return 1;
+-
+-		if (data & ~PRED_CMD_IBPB)
+-			return 1;
+-
+-		if (!data)
+-			break;
+-
+-		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
+-
+-		/*
+-		 * For non-nested:
+-		 * When it's written (to non-zero) for the first time, pass
+-		 * it through.
+-		 *
+-		 * For nested:
+-		 * The handling of the MSR bitmap for L2 guests is done in
+-		 * nested_vmx_merge_msr_bitmap. We should not touch the
+-		 * vmcs02.msr_bitmap here since it gets completely overwritten
+-		 * in the merging.
+-		 */
+-		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
+-					      MSR_TYPE_W);
+-		break;
+-	case MSR_IA32_CR_PAT:
+-		if (!kvm_pat_valid(data))
+-			return 1;
+-
+-		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+-			vmcs_write64(GUEST_IA32_PAT, data);
+-			vcpu->arch.pat = data;
+-			break;
+-		}
+-		ret = kvm_set_msr_common(vcpu, msr_info);
+-		break;
+-	case MSR_IA32_TSC_ADJUST:
+-		ret = kvm_set_msr_common(vcpu, msr_info);
+-		break;
+-	case MSR_IA32_MCG_EXT_CTL:
+-		if ((!msr_info->host_initiated &&
+-		     !(to_vmx(vcpu)->msr_ia32_feature_control &
+-		       FEATURE_CONTROL_LMCE)) ||
+-		    (data & ~MCG_EXT_CTL_LMCE_EN))
+-			return 1;
+-		vcpu->arch.mcg_ext_ctl = data;
+-		break;
+-	case MSR_IA32_FEATURE_CONTROL:
+-		if (!vmx_feature_control_msr_valid(vcpu, data) ||
+-		    (to_vmx(vcpu)->msr_ia32_feature_control &
+-		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
+-			return 1;
+-		vmx->msr_ia32_feature_control = data;
+-		if (msr_info->host_initiated && data == 0)
+-			vmx_leave_nested(vcpu);
+-		break;
+-	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+-		if (!msr_info->host_initiated)
+-			return 1; /* they are read-only */
+-		if (!nested_vmx_allowed(vcpu))
+-			return 1;
+-		return vmx_set_vmx_msr(vcpu, msr_index, data);
+-	case MSR_IA32_XSS:
+-		if (!vmx_xsaves_supported() ||
+-		    (!msr_info->host_initiated &&
+-		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+-		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
+-			return 1;
+-		/*
+-		 * The only supported bit as of Skylake is bit 8, but
+-		 * it is not supported on KVM.
+-		 */
+-		if (data != 0)
+-			return 1;
+-		vcpu->arch.ia32_xss = data;
+-		if (vcpu->arch.ia32_xss != host_xss)
+-			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
+-				vcpu->arch.ia32_xss, host_xss, false);
+-		else
+-			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
+-		break;
+-	case MSR_TSC_AUX:
+-		if (!msr_info->host_initiated &&
+-		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+-			return 1;
+-		/* Check reserved bit, higher 32 bits should be zero */
+-		if ((data >> 32) != 0)
+-			return 1;
+-		/* Otherwise falls through */
+-	default:
+-		msr = find_msr_entry(vmx, msr_index);
+-		if (msr) {
+-			u64 old_msr_data = msr->data;
+-			msr->data = data;
+-			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
+-				preempt_disable();
+-				ret = kvm_set_shared_msr(msr->index, msr->data,
+-							 msr->mask);
+-				preempt_enable();
+-				if (ret)
+-					msr->data = old_msr_data;
+-			}
+-			break;
+-		}
+-			ret = kvm_set_msr_common(vcpu, msr_info);
+-	}
+-
+-	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
+-	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
+-		vmx_update_fb_clear_dis(vcpu, vmx);
+-
+-	return ret;
+-}
+-
+-static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+-{
+-	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
+-	switch (reg) {
+-	case VCPU_REGS_RSP:
+-		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+-		break;
+-	case VCPU_REGS_RIP:
+-		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+-		break;
+-	case VCPU_EXREG_PDPTR:
+-		if (enable_ept)
+-			ept_save_pdptrs(vcpu);
+-		break;
+-	default:
+-		break;
+-	}
+-}
+-
+-static __init int cpu_has_kvm_support(void)
+-{
+-	return cpu_has_vmx();
+-}
+-
+-static __init int vmx_disabled_by_bios(void)
+-{
+-	u64 msr;
+-
+-	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
+-	if (msr & FEATURE_CONTROL_LOCKED) {
+-		/* launched w/ TXT and VMX disabled */
+-		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+-			&& tboot_enabled())
+-			return 1;
+-		/* launched w/o TXT and VMX only enabled w/ TXT */
+-		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+-			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+-			&& !tboot_enabled()) {
+-			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
+-				"activate TXT before enabling KVM\n");
+-			return 1;
+-		}
+-		/* launched w/o TXT and VMX disabled */
+-		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+-			&& !tboot_enabled())
+-			return 1;
+-	}
+-
+-	return 0;
+-}
+-
+-static void kvm_cpu_vmxon(u64 addr)
+-{
+-	cr4_set_bits(X86_CR4_VMXE);
+-	intel_pt_handle_vmx(1);
+-
+-	asm volatile (ASM_VMX_VMXON_RAX
+-			: : "a"(&addr), "m"(addr)
+-			: "memory", "cc");
+-}
+-
+-static int hardware_enable(void)
+-{
+-	int cpu = raw_smp_processor_id();
+-	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+-	u64 old, test_bits;
+-
+-	if (cr4_read_shadow() & X86_CR4_VMXE)
+-		return -EBUSY;
+-
+-	/*
+-	 * This can happen if we hot-added a CPU but failed to allocate
+-	 * VP assist page for it.
+-	 */
+-	if (static_branch_unlikely(&enable_evmcs) &&
+-	    !hv_get_vp_assist_page(cpu))
+-		return -EFAULT;
+-
+-	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
+-
+-	test_bits = FEATURE_CONTROL_LOCKED;
+-	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+-	if (tboot_enabled())
+-		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
+-
+-	if ((old & test_bits) != test_bits) {
+-		/* enable and lock */
+-		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
+-	}
+-	kvm_cpu_vmxon(phys_addr);
+-	if (enable_ept)
+-		ept_sync_global();
+-
+-	return 0;
+-}
+-
+-static void vmclear_local_loaded_vmcss(void)
+-{
+-	int cpu = raw_smp_processor_id();
+-	struct loaded_vmcs *v, *n;
+-
+-	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+-				 loaded_vmcss_on_cpu_link)
+-		__loaded_vmcs_clear(v);
+-}
+-
+-
+-/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+- * tricks.
+- */
+-static void kvm_cpu_vmxoff(void)
+-{
+-	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
+-
+-	intel_pt_handle_vmx(0);
+-	cr4_clear_bits(X86_CR4_VMXE);
+-}
+-
+-static void hardware_disable(void)
+-{
+-	vmclear_local_loaded_vmcss();
+-	kvm_cpu_vmxoff();
+-}
+-
+-static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+-				      u32 msr, u32 *result)
+-{
+-	u32 vmx_msr_low, vmx_msr_high;
+-	u32 ctl = ctl_min | ctl_opt;
+-
+-	rdmsr(msr, vmx_msr_low, vmx_msr_high);
+-
+-	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+-	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
+-
+-	/* Ensure minimum (required) set of control bits are supported. */
+-	if (ctl_min & ~ctl)
+-		return -EIO;
+-
+-	*result = ctl;
+-	return 0;
+-}
+-
+-static __init bool allow_1_setting(u32 msr, u32 ctl)
+-{
+-	u32 vmx_msr_low, vmx_msr_high;
+-
+-	rdmsr(msr, vmx_msr_low, vmx_msr_high);
+-	return vmx_msr_high & ctl;
+-}
+-
+-static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
+-{
+-	u32 vmx_msr_low, vmx_msr_high;
+-	u32 min, opt, min2, opt2;
+-	u32 _pin_based_exec_control = 0;
+-	u32 _cpu_based_exec_control = 0;
+-	u32 _cpu_based_2nd_exec_control = 0;
+-	u32 _vmexit_control = 0;
+-	u32 _vmentry_control = 0;
+-
+-	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
+-	min = CPU_BASED_HLT_EXITING |
+-#ifdef CONFIG_X86_64
+-	      CPU_BASED_CR8_LOAD_EXITING |
+-	      CPU_BASED_CR8_STORE_EXITING |
+-#endif
+-	      CPU_BASED_CR3_LOAD_EXITING |
+-	      CPU_BASED_CR3_STORE_EXITING |
+-	      CPU_BASED_UNCOND_IO_EXITING |
+-	      CPU_BASED_MOV_DR_EXITING |
+-	      CPU_BASED_USE_TSC_OFFSETING |
+-	      CPU_BASED_MWAIT_EXITING |
+-	      CPU_BASED_MONITOR_EXITING |
+-	      CPU_BASED_INVLPG_EXITING |
+-	      CPU_BASED_RDPMC_EXITING;
+-
+-	opt = CPU_BASED_TPR_SHADOW |
+-	      CPU_BASED_USE_MSR_BITMAPS |
+-	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+-				&_cpu_based_exec_control) < 0)
+-		return -EIO;
+-#ifdef CONFIG_X86_64
+-	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+-		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+-					   ~CPU_BASED_CR8_STORE_EXITING;
+-#endif
+-	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+-		min2 = 0;
+-		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+-			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+-			SECONDARY_EXEC_WBINVD_EXITING |
+-			SECONDARY_EXEC_ENABLE_VPID |
+-			SECONDARY_EXEC_ENABLE_EPT |
+-			SECONDARY_EXEC_UNRESTRICTED_GUEST |
+-			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+-			SECONDARY_EXEC_DESC |
+-			SECONDARY_EXEC_RDTSCP |
+-			SECONDARY_EXEC_ENABLE_INVPCID |
+-			SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+-			SECONDARY_EXEC_SHADOW_VMCS |
+-			SECONDARY_EXEC_XSAVES |
+-			SECONDARY_EXEC_RDSEED_EXITING |
+-			SECONDARY_EXEC_RDRAND_EXITING |
+-			SECONDARY_EXEC_ENABLE_PML |
+-			SECONDARY_EXEC_TSC_SCALING |
+-			SECONDARY_EXEC_ENABLE_VMFUNC |
+-			SECONDARY_EXEC_ENCLS_EXITING;
+-		if (adjust_vmx_controls(min2, opt2,
+-					MSR_IA32_VMX_PROCBASED_CTLS2,
+-					&_cpu_based_2nd_exec_control) < 0)
+-			return -EIO;
+-	}
+-#ifndef CONFIG_X86_64
+-	if (!(_cpu_based_2nd_exec_control &
+-				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+-		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+-#endif
+-
+-	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+-		_cpu_based_2nd_exec_control &= ~(
+-				SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+-				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+-
+-	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
+-		&vmx_capability.ept, &vmx_capability.vpid);
+-
+-	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+-		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+-		   enabled */
+-		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+-					     CPU_BASED_CR3_STORE_EXITING |
+-					     CPU_BASED_INVLPG_EXITING);
+-	} else if (vmx_capability.ept) {
+-		vmx_capability.ept = 0;
+-		pr_warn_once("EPT CAP should not exist if not support "
+-				"1-setting enable EPT VM-execution control\n");
+-	}
+-	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
+-		vmx_capability.vpid) {
+-		vmx_capability.vpid = 0;
+-		pr_warn_once("VPID CAP should not exist if not support "
+-				"1-setting enable VPID VM-execution control\n");
+-	}
+-
+-	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
+-#ifdef CONFIG_X86_64
+-	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+-#endif
+-	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
+-		VM_EXIT_CLEAR_BNDCFGS;
+-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+-				&_vmexit_control) < 0)
+-		return -EIO;
+-
+-	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+-	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
+-		 PIN_BASED_VMX_PREEMPTION_TIMER;
+-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+-				&_pin_based_exec_control) < 0)
+-		return -EIO;
+-
+-	if (cpu_has_broken_vmx_preemption_timer())
+-		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+-	if (!(_cpu_based_2nd_exec_control &
+-		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
+-		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+-
+-	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+-	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
+-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+-				&_vmentry_control) < 0)
+-		return -EIO;
+-
+-	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+-
+-	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+-	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+-		return -EIO;
+-
+-#ifdef CONFIG_X86_64
+-	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+-	if (vmx_msr_high & (1u<<16))
+-		return -EIO;
+-#endif
+-
+-	/* Require Write-Back (WB) memory type for VMCS accesses. */
+-	if (((vmx_msr_high >> 18) & 15) != 6)
+-		return -EIO;
+-
+-	vmcs_conf->size = vmx_msr_high & 0x1fff;
+-	vmcs_conf->order = get_order(vmcs_conf->size);
+-	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
+-
+-	vmcs_conf->revision_id = vmx_msr_low;
+-
+-	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+-	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+-	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+-	vmcs_conf->vmexit_ctrl         = _vmexit_control;
+-	vmcs_conf->vmentry_ctrl        = _vmentry_control;
+-
+-	if (static_branch_unlikely(&enable_evmcs))
+-		evmcs_sanitize_exec_ctrls(vmcs_conf);
+-
+-	cpu_has_load_ia32_efer =
+-		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
+-				VM_ENTRY_LOAD_IA32_EFER)
+-		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
+-				   VM_EXIT_LOAD_IA32_EFER);
+-
+-	cpu_has_load_perf_global_ctrl =
+-		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
+-				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+-		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
+-				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+-
+-	/*
+-	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
+-	 * but due to errata below it can't be used. Workaround is to use
+-	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+-	 *
+-	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
+-	 *
+-	 * AAK155             (model 26)
+-	 * AAP115             (model 30)
+-	 * AAT100             (model 37)
+-	 * BC86,AAY89,BD102   (model 44)
+-	 * BA97               (model 46)
+-	 *
+-	 */
+-	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
+-		switch (boot_cpu_data.x86_model) {
+-		case 26:
+-		case 30:
+-		case 37:
+-		case 44:
+-		case 46:
+-			cpu_has_load_perf_global_ctrl = false;
+-			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+-					"does not work properly. Using workaround\n");
+-			break;
+-		default:
+-			break;
+-		}
+-	}
+-
+-	if (boot_cpu_has(X86_FEATURE_XSAVES))
+-		rdmsrl(MSR_IA32_XSS, host_xss);
+-
+-	return 0;
+-}
+-
+-static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
+-{
+-	int node = cpu_to_node(cpu);
+-	struct page *pages;
+-	struct vmcs *vmcs;
+-
+-	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
+-	if (!pages)
+-		return NULL;
+-	vmcs = page_address(pages);
+-	memset(vmcs, 0, vmcs_config.size);
+-
+-	/* KVM supports Enlightened VMCS v1 only */
+-	if (static_branch_unlikely(&enable_evmcs))
+-		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
+-	else
+-		vmcs->hdr.revision_id = vmcs_config.revision_id;
+-
+-	if (shadow)
+-		vmcs->hdr.shadow_vmcs = 1;
+-	return vmcs;
+-}
+-
+-static void free_vmcs(struct vmcs *vmcs)
+-{
+-	free_pages((unsigned long)vmcs, vmcs_config.order);
+-}
+-
+-/*
+- * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+- */
+-static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+-{
+-	if (!loaded_vmcs->vmcs)
+-		return;
+-	loaded_vmcs_clear(loaded_vmcs);
+-	free_vmcs(loaded_vmcs->vmcs);
+-	loaded_vmcs->vmcs = NULL;
+-	if (loaded_vmcs->msr_bitmap)
+-		free_page((unsigned long)loaded_vmcs->msr_bitmap);
+-	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
+-}
+-
+-static struct vmcs *alloc_vmcs(bool shadow)
+-{
+-	return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
+-}
+-
+-static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+-{
+-	loaded_vmcs->vmcs = alloc_vmcs(false);
+-	if (!loaded_vmcs->vmcs)
+-		return -ENOMEM;
+-
+-	loaded_vmcs->shadow_vmcs = NULL;
+-	loaded_vmcs_init(loaded_vmcs);
+-
+-	if (cpu_has_vmx_msr_bitmap()) {
+-		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+-		if (!loaded_vmcs->msr_bitmap)
+-			goto out_vmcs;
+-		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
+-
+-		if (IS_ENABLED(CONFIG_HYPERV) &&
+-		    static_branch_unlikely(&enable_evmcs) &&
+-		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
+-			struct hv_enlightened_vmcs *evmcs =
+-				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
+-
+-			evmcs->hv_enlightenments_control.msr_bitmap = 1;
+-		}
+-	}
+-
+-	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
+-
+-	return 0;
+-
+-out_vmcs:
+-	free_loaded_vmcs(loaded_vmcs);
+-	return -ENOMEM;
+-}
+-
+-static void free_kvm_area(void)
+-{
+-	int cpu;
+-
+-	for_each_possible_cpu(cpu) {
+-		free_vmcs(per_cpu(vmxarea, cpu));
+-		per_cpu(vmxarea, cpu) = NULL;
+-	}
+-}
+-
+-enum vmcs_field_width {
+-	VMCS_FIELD_WIDTH_U16 = 0,
+-	VMCS_FIELD_WIDTH_U64 = 1,
+-	VMCS_FIELD_WIDTH_U32 = 2,
+-	VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
+-};
+-
+-static inline int vmcs_field_width(unsigned long field)
+-{
+-	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
+-		return VMCS_FIELD_WIDTH_U32;
+-	return (field >> 13) & 0x3 ;
+-}
+-
+-static inline int vmcs_field_readonly(unsigned long field)
+-{
+-	return (((field >> 10) & 0x3) == 1);
+-}
+-
+-static void init_vmcs_shadow_fields(void)
+-{
+-	int i, j;
+-
+-	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
+-		u16 field = shadow_read_only_fields[i];
+-		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+-		    (i + 1 == max_shadow_read_only_fields ||
+-		     shadow_read_only_fields[i + 1] != field + 1))
+-			pr_err("Missing field from shadow_read_only_field %x\n",
+-			       field + 1);
+-
+-		clear_bit(field, vmx_vmread_bitmap);
+-#ifdef CONFIG_X86_64
+-		if (field & 1)
+-			continue;
+-#endif
+-		if (j < i)
+-			shadow_read_only_fields[j] = field;
+-		j++;
+-	}
+-	max_shadow_read_only_fields = j;
+-
+-	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+-		u16 field = shadow_read_write_fields[i];
+-		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+-		    (i + 1 == max_shadow_read_write_fields ||
+-		     shadow_read_write_fields[i + 1] != field + 1))
+-			pr_err("Missing field from shadow_read_write_field %x\n",
+-			       field + 1);
+-
+-		/*
+-		 * PML and the preemption timer can be emulated, but the
+-		 * processor cannot vmwrite to fields that don't exist
+-		 * on bare metal.
+-		 */
+-		switch (field) {
+-		case GUEST_PML_INDEX:
+-			if (!cpu_has_vmx_pml())
+-				continue;
+-			break;
+-		case VMX_PREEMPTION_TIMER_VALUE:
+-			if (!cpu_has_vmx_preemption_timer())
+-				continue;
+-			break;
+-		case GUEST_INTR_STATUS:
+-			if (!cpu_has_vmx_apicv())
+-				continue;
+-			break;
+-		default:
+-			break;
+-		}
+-
+-		clear_bit(field, vmx_vmwrite_bitmap);
+-		clear_bit(field, vmx_vmread_bitmap);
+-#ifdef CONFIG_X86_64
+-		if (field & 1)
+-			continue;
+-#endif
+-		if (j < i)
+-			shadow_read_write_fields[j] = field;
+-		j++;
+-	}
+-	max_shadow_read_write_fields = j;
+-}
+-
+-static __init int alloc_kvm_area(void)
+-{
+-	int cpu;
+-
+-	for_each_possible_cpu(cpu) {
+-		struct vmcs *vmcs;
+-
+-		vmcs = alloc_vmcs_cpu(false, cpu);
+-		if (!vmcs) {
+-			free_kvm_area();
+-			return -ENOMEM;
+-		}
+-
+-		/*
+-		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
+-		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
+-		 * revision_id reported by MSR_IA32_VMX_BASIC.
+-		 *
+-		 * However, even though not explictly documented by
+-		 * TLFS, VMXArea passed as VMXON argument should
+-		 * still be marked with revision_id reported by
+-		 * physical CPU.
+-		 */
+-		if (static_branch_unlikely(&enable_evmcs))
+-			vmcs->hdr.revision_id = vmcs_config.revision_id;
+-
+-		per_cpu(vmxarea, cpu) = vmcs;
+-	}
+-	return 0;
+-}
+-
+-static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+-		struct kvm_segment *save)
+-{
+-	if (!emulate_invalid_guest_state) {
+-		/*
+-		 * CS and SS RPL should be equal during guest entry according
+-		 * to VMX spec, but in reality it is not always so. Since vcpu
+-		 * is in the middle of the transition from real mode to
+-		 * protected mode it is safe to assume that RPL 0 is a good
+-		 * default value.
+-		 */
+-		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+-			save->selector &= ~SEGMENT_RPL_MASK;
+-		save->dpl = save->selector & SEGMENT_RPL_MASK;
+-		save->s = 1;
+-	}
+-	vmx_set_segment(vcpu, save, seg);
+-}
+-
+-static void enter_pmode(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long flags;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	/*
+-	 * Update real mode segment cache. It may be not up-to-date if sement
+-	 * register was written while vcpu was in a guest mode.
+-	 */
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+-
+-	vmx->rmode.vm86_active = 0;
+-
+-	vmx_segment_cache_clear(vmx);
+-
+-	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+-
+-	flags = vmcs_readl(GUEST_RFLAGS);
+-	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+-	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+-	vmcs_writel(GUEST_RFLAGS, flags);
+-
+-	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+-			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+-
+-	update_exception_bitmap(vcpu);
+-
+-	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+-	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+-	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+-	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+-	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+-	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+-}
+-
+-static void fix_rmode_seg(int seg, struct kvm_segment *save)
+-{
+-	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+-	struct kvm_segment var = *save;
+-
+-	var.dpl = 0x3;
+-	if (seg == VCPU_SREG_CS)
+-		var.type = 0x3;
+-
+-	if (!emulate_invalid_guest_state) {
+-		var.selector = var.base >> 4;
+-		var.base = var.base & 0xffff0;
+-		var.limit = 0xffff;
+-		var.g = 0;
+-		var.db = 0;
+-		var.present = 1;
+-		var.s = 1;
+-		var.l = 0;
+-		var.unusable = 0;
+-		var.type = 0x3;
+-		var.avl = 0;
+-		if (save->base & 0xf)
+-			printk_once(KERN_WARNING "kvm: segment base is not "
+-					"paragraph aligned when entering "
+-					"protected mode (seg=%d)", seg);
+-	}
+-
+-	vmcs_write16(sf->selector, var.selector);
+-	vmcs_writel(sf->base, var.base);
+-	vmcs_write32(sf->limit, var.limit);
+-	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+-}
+-
+-static void enter_rmode(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long flags;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
+-
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+-
+-	vmx->rmode.vm86_active = 1;
+-
+-	/*
+-	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+-	 * vcpu. Warn the user that an update is overdue.
+-	 */
+-	if (!kvm_vmx->tss_addr)
+-		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+-			     "called before entering vcpu\n");
+-
+-	vmx_segment_cache_clear(vmx);
+-
+-	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
+-	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+-	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+-
+-	flags = vmcs_readl(GUEST_RFLAGS);
+-	vmx->rmode.save_rflags = flags;
+-
+-	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+-
+-	vmcs_writel(GUEST_RFLAGS, flags);
+-	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+-	update_exception_bitmap(vcpu);
+-
+-	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+-	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+-	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+-	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+-	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+-	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+-
+-	kvm_mmu_reset_context(vcpu);
+-}
+-
+-static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
+-
+-	if (!msr)
+-		return;
+-
+-	vcpu->arch.efer = efer;
+-	if (efer & EFER_LMA) {
+-		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+-		msr->data = efer;
+-	} else {
+-		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+-
+-		msr->data = efer & ~EFER_LME;
+-	}
+-	setup_msrs(vmx);
+-}
+-
+-#ifdef CONFIG_X86_64
+-
+-static void enter_lmode(struct kvm_vcpu *vcpu)
+-{
+-	u32 guest_tr_ar;
+-
+-	vmx_segment_cache_clear(to_vmx(vcpu));
+-
+-	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+-	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
+-		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+-				     __func__);
+-		vmcs_write32(GUEST_TR_AR_BYTES,
+-			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
+-			     | VMX_AR_TYPE_BUSY_64_TSS);
+-	}
+-	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+-}
+-
+-static void exit_lmode(struct kvm_vcpu *vcpu)
+-{
+-	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+-	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+-}
+-
+-#endif
+-
+-static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
+-				bool invalidate_gpa)
+-{
+-	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
+-		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+-			return;
+-		ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
+-	} else {
+-		vpid_sync_context(vpid);
+-	}
+-}
+-
+-static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
+-{
+-	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
+-}
+-
+-static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
+-{
+-	int vpid = to_vmx(vcpu)->vpid;
+-
+-	if (!vpid_sync_vcpu_addr(vpid, addr))
+-		vpid_sync_context(vpid);
+-
+-	/*
+-	 * If VPIDs are not supported or enabled, then the above is a no-op.
+-	 * But we don't really need a TLB flush in that case anyway, because
+-	 * each VM entry/exit includes an implicit flush when VPID is 0.
+-	 */
+-}
+-
+-static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+-{
+-	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+-
+-	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
+-	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
+-}
+-
+-static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
+-{
+-	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
+-		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+-	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+-}
+-
+-static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+-{
+-	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+-
+-	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
+-	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
+-}
+-
+-static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+-
+-	if (!test_bit(VCPU_EXREG_PDPTR,
+-		      (unsigned long *)&vcpu->arch.regs_dirty))
+-		return;
+-
+-	if (is_pae_paging(vcpu)) {
+-		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+-		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+-		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+-		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+-	}
+-}
+-
+-static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+-
+-	if (is_pae_paging(vcpu)) {
+-		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+-		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+-		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+-		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+-	}
+-
+-	__set_bit(VCPU_EXREG_PDPTR,
+-		  (unsigned long *)&vcpu->arch.regs_avail);
+-	__set_bit(VCPU_EXREG_PDPTR,
+-		  (unsigned long *)&vcpu->arch.regs_dirty);
+-}
+-
+-static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+-	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-
+-	if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+-		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
+-	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
+-		fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
+-
+-	return fixed_bits_valid(val, fixed0, fixed1);
+-}
+-
+-static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+-	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+-
+-	return fixed_bits_valid(val, fixed0, fixed1);
+-}
+-
+-static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
+-	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
+-
+-	return fixed_bits_valid(val, fixed0, fixed1);
+-}
+-
+-/* No difference in the restrictions on guest and host CR4 in VMX operation. */
+-#define nested_guest_cr4_valid	nested_cr4_valid
+-#define nested_host_cr4_valid	nested_cr4_valid
+-
+-static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+-
+-static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
+-					unsigned long cr0,
+-					struct kvm_vcpu *vcpu)
+-{
+-	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+-		vmx_decache_cr3(vcpu);
+-	if (!(cr0 & X86_CR0_PG)) {
+-		/* From paging/starting to nonpaging */
+-		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+-			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
+-			     (CPU_BASED_CR3_LOAD_EXITING |
+-			      CPU_BASED_CR3_STORE_EXITING));
+-		vcpu->arch.cr0 = cr0;
+-		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+-	} else if (!is_paging(vcpu)) {
+-		/* From nonpaging to paging */
+-		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+-			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+-			     ~(CPU_BASED_CR3_LOAD_EXITING |
+-			       CPU_BASED_CR3_STORE_EXITING));
+-		vcpu->arch.cr0 = cr0;
+-		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+-	}
+-
+-	if (!(cr0 & X86_CR0_WP))
+-		*hw_cr0 &= ~X86_CR0_WP;
+-}
+-
+-static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned long hw_cr0;
+-
+-	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
+-	if (enable_unrestricted_guest)
+-		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+-	else {
+-		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+-
+-		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+-			enter_pmode(vcpu);
+-
+-		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+-			enter_rmode(vcpu);
+-	}
+-
+-#ifdef CONFIG_X86_64
+-	if (vcpu->arch.efer & EFER_LME) {
+-		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+-			enter_lmode(vcpu);
+-		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+-			exit_lmode(vcpu);
+-	}
+-#endif
+-
+-	if (enable_ept && !enable_unrestricted_guest)
+-		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
+-
+-	vmcs_writel(CR0_READ_SHADOW, cr0);
+-	vmcs_writel(GUEST_CR0, hw_cr0);
+-	vcpu->arch.cr0 = cr0;
+-
+-	/* depends on vcpu->arch.cr0 to be set to a new value */
+-	vmx->emulation_required = emulation_required(vcpu);
+-}
+-
+-static int get_ept_level(struct kvm_vcpu *vcpu)
+-{
+-	/* Nested EPT currently only supports 4-level walks. */
+-	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
+-		return 4;
+-	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
+-		return 5;
+-	return 4;
+-}
+-
+-static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
+-{
+-	u64 eptp = VMX_EPTP_MT_WB;
+-
+-	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
+-
+-	if (enable_ept_ad_bits &&
+-	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
+-		eptp |= VMX_EPTP_AD_ENABLE_BIT;
+-	eptp |= (root_hpa & PAGE_MASK);
+-
+-	return eptp;
+-}
+-
+-static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+-{
+-	struct kvm *kvm = vcpu->kvm;
+-	unsigned long guest_cr3;
+-	u64 eptp;
+-
+-	guest_cr3 = cr3;
+-	if (enable_ept) {
+-		eptp = construct_eptp(vcpu, cr3);
+-		vmcs_write64(EPT_POINTER, eptp);
+-
+-		if (kvm_x86_ops->tlb_remote_flush) {
+-			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+-			to_vmx(vcpu)->ept_pointer = eptp;
+-			to_kvm_vmx(kvm)->ept_pointers_match
+-				= EPT_POINTERS_CHECK;
+-			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+-		}
+-
+-		if (enable_unrestricted_guest || is_paging(vcpu) ||
+-		    is_guest_mode(vcpu))
+-			guest_cr3 = kvm_read_cr3(vcpu);
+-		else
+-			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
+-		ept_load_pdptrs(vcpu);
+-	}
+-
+-	vmcs_writel(GUEST_CR3, guest_cr3);
+-}
+-
+-static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+-{
+-	/*
+-	 * Pass through host's Machine Check Enable value to hw_cr4, which
+-	 * is in force while we are in guest mode.  Do not let guests control
+-	 * this bit, even if host CR4.MCE == 0.
+-	 */
+-	unsigned long hw_cr4;
+-
+-	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
+-	if (enable_unrestricted_guest)
+-		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
+-	else if (to_vmx(vcpu)->rmode.vm86_active)
+-		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
+-	else
+-		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
+-
+-	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
+-		if (cr4 & X86_CR4_UMIP) {
+-			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+-				SECONDARY_EXEC_DESC);
+-			hw_cr4 &= ~X86_CR4_UMIP;
+-		} else if (!is_guest_mode(vcpu) ||
+-			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
+-			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+-					SECONDARY_EXEC_DESC);
+-	}
+-
+-	if (cr4 & X86_CR4_VMXE) {
+-		/*
+-		 * To use VMXON (and later other VMX instructions), a guest
+-		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
+-		 * So basically the check on whether to allow nested VMX
+-		 * is here.  We operate under the default treatment of SMM,
+-		 * so VMX cannot be enabled under SMM.
+-		 */
+-		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
+-			return 1;
+-	}
+-
+-	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
+-		return 1;
+-
+-	vcpu->arch.cr4 = cr4;
+-
+-	if (!enable_unrestricted_guest) {
+-		if (enable_ept) {
+-			if (!is_paging(vcpu)) {
+-				hw_cr4 &= ~X86_CR4_PAE;
+-				hw_cr4 |= X86_CR4_PSE;
+-			} else if (!(cr4 & X86_CR4_PAE)) {
+-				hw_cr4 &= ~X86_CR4_PAE;
+-			}
+-		}
+-
+-		/*
+-		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
+-		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
+-		 * to be manually disabled when guest switches to non-paging
+-		 * mode.
+-		 *
+-		 * If !enable_unrestricted_guest, the CPU is always running
+-		 * with CR0.PG=1 and CR4 needs to be modified.
+-		 * If enable_unrestricted_guest, the CPU automatically
+-		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
+-		 */
+-		if (!is_paging(vcpu))
+-			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
+-	}
+-
+-	vmcs_writel(CR4_READ_SHADOW, cr4);
+-	vmcs_writel(GUEST_CR4, hw_cr4);
+-	return 0;
+-}
+-
+-static void vmx_get_segment(struct kvm_vcpu *vcpu,
+-			    struct kvm_segment *var, int seg)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 ar;
+-
+-	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+-		*var = vmx->rmode.segs[seg];
+-		if (seg == VCPU_SREG_TR
+-		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+-			return;
+-		var->base = vmx_read_guest_seg_base(vmx, seg);
+-		var->selector = vmx_read_guest_seg_selector(vmx, seg);
+-		return;
+-	}
+-	var->base = vmx_read_guest_seg_base(vmx, seg);
+-	var->limit = vmx_read_guest_seg_limit(vmx, seg);
+-	var->selector = vmx_read_guest_seg_selector(vmx, seg);
+-	ar = vmx_read_guest_seg_ar(vmx, seg);
+-	var->unusable = (ar >> 16) & 1;
+-	var->type = ar & 15;
+-	var->s = (ar >> 4) & 1;
+-	var->dpl = (ar >> 5) & 3;
+-	/*
+-	 * Some userspaces do not preserve unusable property. Since usable
+-	 * segment has to be present according to VMX spec we can use present
+-	 * property to amend userspace bug by making unusable segment always
+-	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
+-	 * segment as unusable.
+-	 */
+-	var->present = !var->unusable;
+-	var->avl = (ar >> 12) & 1;
+-	var->l = (ar >> 13) & 1;
+-	var->db = (ar >> 14) & 1;
+-	var->g = (ar >> 15) & 1;
+-}
+-
+-static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+-{
+-	struct kvm_segment s;
+-
+-	if (to_vmx(vcpu)->rmode.vm86_active) {
+-		vmx_get_segment(vcpu, &s, seg);
+-		return s.base;
+-	}
+-	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+-}
+-
+-static int vmx_get_cpl(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (unlikely(vmx->rmode.vm86_active))
+-		return 0;
+-	else {
+-		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+-		return VMX_AR_DPL(ar);
+-	}
+-}
+-
+-static u32 vmx_segment_access_rights(struct kvm_segment *var)
+-{
+-	u32 ar;
+-
+-	if (var->unusable || !var->present)
+-		ar = 1 << 16;
+-	else {
+-		ar = var->type & 15;
+-		ar |= (var->s & 1) << 4;
+-		ar |= (var->dpl & 3) << 5;
+-		ar |= (var->present & 1) << 7;
+-		ar |= (var->avl & 1) << 12;
+-		ar |= (var->l & 1) << 13;
+-		ar |= (var->db & 1) << 14;
+-		ar |= (var->g & 1) << 15;
+-	}
+-
+-	return ar;
+-}
+-
+-static void vmx_set_segment(struct kvm_vcpu *vcpu,
+-			    struct kvm_segment *var, int seg)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+-
+-	vmx_segment_cache_clear(vmx);
+-
+-	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+-		vmx->rmode.segs[seg] = *var;
+-		if (seg == VCPU_SREG_TR)
+-			vmcs_write16(sf->selector, var->selector);
+-		else if (var->s)
+-			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+-		goto out;
+-	}
+-
+-	vmcs_writel(sf->base, var->base);
+-	vmcs_write32(sf->limit, var->limit);
+-	vmcs_write16(sf->selector, var->selector);
+-
+-	/*
+-	 *   Fix the "Accessed" bit in AR field of segment registers for older
+-	 * qemu binaries.
+-	 *   IA32 arch specifies that at the time of processor reset the
+-	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
+-	 * is setting it to 0 in the userland code. This causes invalid guest
+-	 * state vmexit when "unrestricted guest" mode is turned on.
+-	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
+-	 * tree. Newer qemu binaries with that qemu fix would not need this
+-	 * kvm hack.
+-	 */
+-	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
+-		var->type |= 0x1; /* Accessed */
+-
+-	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+-
+-out:
+-	vmx->emulation_required = emulation_required(vcpu);
+-}
+-
+-static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+-{
+-	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+-
+-	*db = (ar >> 14) & 1;
+-	*l = (ar >> 13) & 1;
+-}
+-
+-static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+-{
+-	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+-	dt->address = vmcs_readl(GUEST_IDTR_BASE);
+-}
+-
+-static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+-{
+-	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+-	vmcs_writel(GUEST_IDTR_BASE, dt->address);
+-}
+-
+-static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+-{
+-	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+-	dt->address = vmcs_readl(GUEST_GDTR_BASE);
+-}
+-
+-static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+-{
+-	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+-	vmcs_writel(GUEST_GDTR_BASE, dt->address);
+-}
+-
+-static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+-{
+-	struct kvm_segment var;
+-	u32 ar;
+-
+-	vmx_get_segment(vcpu, &var, seg);
+-	var.dpl = 0x3;
+-	if (seg == VCPU_SREG_CS)
+-		var.type = 0x3;
+-	ar = vmx_segment_access_rights(&var);
+-
+-	if (var.base != (var.selector << 4))
+-		return false;
+-	if (var.limit != 0xffff)
+-		return false;
+-	if (ar != 0xf3)
+-		return false;
+-
+-	return true;
+-}
+-
+-static bool code_segment_valid(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_segment cs;
+-	unsigned int cs_rpl;
+-
+-	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+-	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+-
+-	if (cs.unusable)
+-		return false;
+-	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
+-		return false;
+-	if (!cs.s)
+-		return false;
+-	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
+-		if (cs.dpl > cs_rpl)
+-			return false;
+-	} else {
+-		if (cs.dpl != cs_rpl)
+-			return false;
+-	}
+-	if (!cs.present)
+-		return false;
+-
+-	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+-	return true;
+-}
+-
+-static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_segment ss;
+-	unsigned int ss_rpl;
+-
+-	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+-	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+-
+-	if (ss.unusable)
+-		return true;
+-	if (ss.type != 3 && ss.type != 7)
+-		return false;
+-	if (!ss.s)
+-		return false;
+-	if (ss.dpl != ss_rpl) /* DPL != RPL */
+-		return false;
+-	if (!ss.present)
+-		return false;
+-
+-	return true;
+-}
+-
+-static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+-{
+-	struct kvm_segment var;
+-	unsigned int rpl;
+-
+-	vmx_get_segment(vcpu, &var, seg);
+-	rpl = var.selector & SEGMENT_RPL_MASK;
+-
+-	if (var.unusable)
+-		return true;
+-	if (!var.s)
+-		return false;
+-	if (!var.present)
+-		return false;
+-	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
+-		if (var.dpl < rpl) /* DPL < RPL */
+-			return false;
+-	}
+-
+-	/* TODO: Add other members to kvm_segment_field to allow checking for other access
+-	 * rights flags
+-	 */
+-	return true;
+-}
+-
+-static bool tr_valid(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_segment tr;
+-
+-	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+-
+-	if (tr.unusable)
+-		return false;
+-	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
+-		return false;
+-	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+-		return false;
+-	if (!tr.present)
+-		return false;
+-
+-	return true;
+-}
+-
+-static bool ldtr_valid(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_segment ldtr;
+-
+-	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+-
+-	if (ldtr.unusable)
+-		return true;
+-	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
+-		return false;
+-	if (ldtr.type != 2)
+-		return false;
+-	if (!ldtr.present)
+-		return false;
+-
+-	return true;
+-}
+-
+-static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+-{
+-	struct kvm_segment cs, ss;
+-
+-	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+-	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+-
+-	return ((cs.selector & SEGMENT_RPL_MASK) ==
+-		 (ss.selector & SEGMENT_RPL_MASK));
+-}
+-
+-static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu,
+-					unsigned int port, int size);
+-static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+-				       struct vmcs12 *vmcs12)
+-{
+-	unsigned long exit_qualification;
+-	unsigned short port;
+-	int size;
+-
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+-		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-
+-	port = exit_qualification >> 16;
+-	size = (exit_qualification & 7) + 1;
+-
+-	return nested_vmx_check_io_bitmaps(vcpu, port, size);
+-}
+-
+-/*
+- * Check if guest state is valid. Returns true if valid, false if
+- * not.
+- * We assume that registers are always usable
+- */
+-static bool guest_state_valid(struct kvm_vcpu *vcpu)
+-{
+-	if (enable_unrestricted_guest)
+-		return true;
+-
+-	/* real mode guest state checks */
+-	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+-		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+-			return false;
+-		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+-			return false;
+-		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+-			return false;
+-		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+-			return false;
+-		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+-			return false;
+-		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+-			return false;
+-	} else {
+-	/* protected mode guest state checks */
+-		if (!cs_ss_rpl_check(vcpu))
+-			return false;
+-		if (!code_segment_valid(vcpu))
+-			return false;
+-		if (!stack_segment_valid(vcpu))
+-			return false;
+-		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+-			return false;
+-		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+-			return false;
+-		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+-			return false;
+-		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+-			return false;
+-		if (!tr_valid(vcpu))
+-			return false;
+-		if (!ldtr_valid(vcpu))
+-			return false;
+-	}
+-	/* TODO:
+-	 * - Add checks on RIP
+-	 * - Add checks on RFLAGS
+-	 */
+-
+-	return true;
+-}
+-
+-static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
+-{
+-	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
+-}
+-
+-static int init_rmode_tss(struct kvm *kvm)
+-{
+-	gfn_t fn;
+-	u16 data = 0;
+-	int idx, r;
+-
+-	idx = srcu_read_lock(&kvm->srcu);
+-	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
+-	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+-	if (r < 0)
+-		goto out;
+-	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+-	r = kvm_write_guest_page(kvm, fn++, &data,
+-			TSS_IOPB_BASE_OFFSET, sizeof(u16));
+-	if (r < 0)
+-		goto out;
+-	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+-	if (r < 0)
+-		goto out;
+-	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+-	if (r < 0)
+-		goto out;
+-	data = ~0;
+-	r = kvm_write_guest_page(kvm, fn, &data,
+-				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+-				 sizeof(u8));
+-out:
+-	srcu_read_unlock(&kvm->srcu, idx);
+-	return r;
+-}
+-
+-static int init_rmode_identity_map(struct kvm *kvm)
+-{
+-	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
+-	int i, idx, r = 0;
+-	kvm_pfn_t identity_map_pfn;
+-	u32 tmp;
+-
+-	/* Protect kvm_vmx->ept_identity_pagetable_done. */
+-	mutex_lock(&kvm->slots_lock);
+-
+-	if (likely(kvm_vmx->ept_identity_pagetable_done))
+-		goto out2;
+-
+-	if (!kvm_vmx->ept_identity_map_addr)
+-		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+-	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
+-
+-	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
+-				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
+-	if (r < 0)
+-		goto out2;
+-
+-	idx = srcu_read_lock(&kvm->srcu);
+-	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+-	if (r < 0)
+-		goto out;
+-	/* Set up identity-mapping pagetable for EPT in real mode */
+-	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+-		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+-			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+-		r = kvm_write_guest_page(kvm, identity_map_pfn,
+-				&tmp, i * sizeof(tmp), sizeof(tmp));
+-		if (r < 0)
+-			goto out;
+-	}
+-	kvm_vmx->ept_identity_pagetable_done = true;
+-
+-out:
+-	srcu_read_unlock(&kvm->srcu, idx);
+-
+-out2:
+-	mutex_unlock(&kvm->slots_lock);
+-	return r;
+-}
+-
+-static void seg_setup(int seg)
+-{
+-	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+-	unsigned int ar;
+-
+-	vmcs_write16(sf->selector, 0);
+-	vmcs_writel(sf->base, 0);
+-	vmcs_write32(sf->limit, 0xffff);
+-	ar = 0x93;
+-	if (seg == VCPU_SREG_CS)
+-		ar |= 0x08; /* code segment */
+-
+-	vmcs_write32(sf->ar_bytes, ar);
+-}
+-
+-static int alloc_apic_access_page(struct kvm *kvm)
+-{
+-	struct page *page;
+-	int r = 0;
+-
+-	mutex_lock(&kvm->slots_lock);
+-	if (kvm->arch.apic_access_page_done)
+-		goto out;
+-	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+-				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
+-	if (r)
+-		goto out;
+-
+-	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+-	if (is_error_page(page)) {
+-		r = -EFAULT;
+-		goto out;
+-	}
+-
+-	/*
+-	 * Do not pin the page in memory, so that memory hot-unplug
+-	 * is able to migrate it.
+-	 */
+-	put_page(page);
+-	kvm->arch.apic_access_page_done = true;
+-out:
+-	mutex_unlock(&kvm->slots_lock);
+-	return r;
+-}
+-
+-static int allocate_vpid(void)
+-{
+-	int vpid;
+-
+-	if (!enable_vpid)
+-		return 0;
+-	spin_lock(&vmx_vpid_lock);
+-	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+-	if (vpid < VMX_NR_VPIDS)
+-		__set_bit(vpid, vmx_vpid_bitmap);
+-	else
+-		vpid = 0;
+-	spin_unlock(&vmx_vpid_lock);
+-	return vpid;
+-}
+-
+-static void free_vpid(int vpid)
+-{
+-	if (!enable_vpid || vpid == 0)
+-		return;
+-	spin_lock(&vmx_vpid_lock);
+-	__clear_bit(vpid, vmx_vpid_bitmap);
+-	spin_unlock(&vmx_vpid_lock);
+-}
+-
+-static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+-							  u32 msr, int type)
+-{
+-	int f = sizeof(unsigned long);
+-
+-	if (!cpu_has_vmx_msr_bitmap())
+-		return;
+-
+-	if (static_branch_unlikely(&enable_evmcs))
+-		evmcs_touch_msr_bitmap();
+-
+-	/*
+-	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+-	 * have the write-low and read-high bitmap offsets the wrong way round.
+-	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+-	 */
+-	if (msr <= 0x1fff) {
+-		if (type & MSR_TYPE_R)
+-			/* read-low */
+-			__clear_bit(msr, msr_bitmap + 0x000 / f);
+-
+-		if (type & MSR_TYPE_W)
+-			/* write-low */
+-			__clear_bit(msr, msr_bitmap + 0x800 / f);
+-
+-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+-		msr &= 0x1fff;
+-		if (type & MSR_TYPE_R)
+-			/* read-high */
+-			__clear_bit(msr, msr_bitmap + 0x400 / f);
+-
+-		if (type & MSR_TYPE_W)
+-			/* write-high */
+-			__clear_bit(msr, msr_bitmap + 0xc00 / f);
+-
+-	}
+-}
+-
+-static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
+-							 u32 msr, int type)
+-{
+-	int f = sizeof(unsigned long);
+-
+-	if (!cpu_has_vmx_msr_bitmap())
+-		return;
+-
+-	if (static_branch_unlikely(&enable_evmcs))
+-		evmcs_touch_msr_bitmap();
+-
+-	/*
+-	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+-	 * have the write-low and read-high bitmap offsets the wrong way round.
+-	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+-	 */
+-	if (msr <= 0x1fff) {
+-		if (type & MSR_TYPE_R)
+-			/* read-low */
+-			__set_bit(msr, msr_bitmap + 0x000 / f);
+-
+-		if (type & MSR_TYPE_W)
+-			/* write-low */
+-			__set_bit(msr, msr_bitmap + 0x800 / f);
+-
+-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+-		msr &= 0x1fff;
+-		if (type & MSR_TYPE_R)
+-			/* read-high */
+-			__set_bit(msr, msr_bitmap + 0x400 / f);
+-
+-		if (type & MSR_TYPE_W)
+-			/* write-high */
+-			__set_bit(msr, msr_bitmap + 0xc00 / f);
+-
+-	}
+-}
+-
+-static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
+-			     			      u32 msr, int type, bool value)
+-{
+-	if (value)
+-		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
+-	else
+-		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
+-}
+-
+-/*
+- * If a msr is allowed by L0, we should check whether it is allowed by L1.
+- * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+- */
+-static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+-					       unsigned long *msr_bitmap_nested,
+-					       u32 msr, int type)
+-{
+-	int f = sizeof(unsigned long);
+-
+-	/*
+-	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+-	 * have the write-low and read-high bitmap offsets the wrong way round.
+-	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+-	 */
+-	if (msr <= 0x1fff) {
+-		if (type & MSR_TYPE_R &&
+-		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+-			/* read-low */
+-			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+-
+-		if (type & MSR_TYPE_W &&
+-		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+-			/* write-low */
+-			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+-
+-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+-		msr &= 0x1fff;
+-		if (type & MSR_TYPE_R &&
+-		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+-			/* read-high */
+-			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+-
+-		if (type & MSR_TYPE_W &&
+-		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+-			/* write-high */
+-			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+-
+-	}
+-}
+-
+-static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
+-{
+-	u8 mode = 0;
+-
+-	if (cpu_has_secondary_exec_ctrls() &&
+-	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
+-	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
+-		mode |= MSR_BITMAP_MODE_X2APIC;
+-		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
+-			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
+-	}
+-
+-	return mode;
+-}
+-
+-#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
+-
+-static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
+-					 u8 mode)
+-{
+-	int msr;
+-
+-	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+-		unsigned word = msr / BITS_PER_LONG;
+-		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
+-		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
+-	}
+-
+-	if (mode & MSR_BITMAP_MODE_X2APIC) {
+-		/*
+-		 * TPR reads and writes can be virtualized even if virtual interrupt
+-		 * delivery is not in use.
+-		 */
+-		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
+-		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
+-			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
+-			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
+-			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
+-		}
+-	}
+-}
+-
+-static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+-	u8 mode = vmx_msr_bitmap_mode(vcpu);
+-	u8 changed = mode ^ vmx->msr_bitmap_mode;
+-
+-	if (!changed)
+-		return;
+-
+-	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
+-		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
+-
+-	vmx->msr_bitmap_mode = mode;
+-}
+-
+-static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
+-{
+-	return enable_apicv;
+-}
+-
+-static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	gfn_t gfn;
+-
+-	/*
+-	 * Don't need to mark the APIC access page dirty; it is never
+-	 * written to by the CPU during APIC virtualization.
+-	 */
+-
+-	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+-		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
+-		kvm_vcpu_mark_page_dirty(vcpu, gfn);
+-	}
+-
+-	if (nested_cpu_has_posted_intr(vmcs12)) {
+-		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
+-		kvm_vcpu_mark_page_dirty(vcpu, gfn);
+-	}
+-}
+-
+-
+-static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int max_irr;
+-	void *vapic_page;
+-	u16 status;
+-
+-	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
+-		return;
+-
+-	vmx->nested.pi_pending = false;
+-	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+-		return;
+-
+-	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
+-	if (max_irr != 256) {
+-		vapic_page = kmap(vmx->nested.virtual_apic_page);
+-		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
+-			vapic_page, &max_irr);
+-		kunmap(vmx->nested.virtual_apic_page);
+-
+-		status = vmcs_read16(GUEST_INTR_STATUS);
+-		if ((u8)max_irr > ((u8)status & 0xff)) {
+-			status &= ~0xff;
+-			status |= (u8)max_irr;
+-			vmcs_write16(GUEST_INTR_STATUS, status);
+-		}
+-	}
+-
+-	nested_mark_vmcs12_pages_dirty(vcpu);
+-}
+-
+-static u8 vmx_get_rvi(void)
+-{
+-	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
+-}
+-
+-static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	void *vapic_page;
+-	u32 vppr;
+-	int rvi;
+-
+-	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
+-		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
+-		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
+-		return false;
+-
+-	rvi = vmx_get_rvi();
+-
+-	vapic_page = kmap(vmx->nested.virtual_apic_page);
+-	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
+-	kunmap(vmx->nested.virtual_apic_page);
+-
+-	return ((rvi & 0xf0) > (vppr & 0xf0));
+-}
+-
+-static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
+-						     bool nested)
+-{
+-#ifdef CONFIG_SMP
+-	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
+-
+-	if (vcpu->mode == IN_GUEST_MODE) {
+-		/*
+-		 * The vector of interrupt to be delivered to vcpu had
+-		 * been set in PIR before this function.
+-		 *
+-		 * Following cases will be reached in this block, and
+-		 * we always send a notification event in all cases as
+-		 * explained below.
+-		 *
+-		 * Case 1: vcpu keeps in non-root mode. Sending a
+-		 * notification event posts the interrupt to vcpu.
+-		 *
+-		 * Case 2: vcpu exits to root mode and is still
+-		 * runnable. PIR will be synced to vIRR before the
+-		 * next vcpu entry. Sending a notification event in
+-		 * this case has no effect, as vcpu is not in root
+-		 * mode.
+-		 *
+-		 * Case 3: vcpu exits to root mode and is blocked.
+-		 * vcpu_block() has already synced PIR to vIRR and
+-		 * never blocks vcpu if vIRR is not cleared. Therefore,
+-		 * a blocked vcpu here does not wait for any requested
+-		 * interrupts in PIR, and sending a notification event
+-		 * which has no effect is safe here.
+-		 */
+-
+-		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
+-		return true;
+-	}
+-#endif
+-	return false;
+-}
+-
+-static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+-						int vector)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (is_guest_mode(vcpu) &&
+-	    vector == vmx->nested.posted_intr_nv) {
+-		/*
+-		 * If a posted intr is not recognized by hardware,
+-		 * we will accomplish it in the next vmentry.
+-		 */
+-		vmx->nested.pi_pending = true;
+-		kvm_make_request(KVM_REQ_EVENT, vcpu);
+-		/* the PIR and ON have been set by L1. */
+-		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
+-			kvm_vcpu_kick(vcpu);
+-		return 0;
+-	}
+-	return -1;
+-}
+-/*
+- * Send interrupt to vcpu via posted interrupt way.
+- * 1. If target vcpu is running(non-root mode), send posted interrupt
+- * notification to vcpu and hardware will sync PIR to vIRR atomically.
+- * 2. If target vcpu isn't running(root mode), kick it to pick up the
+- * interrupt from PIR in next vmentry.
+- */
+-static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int r;
+-
+-	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+-	if (!r)
+-		return 0;
+-
+-	if (!vcpu->arch.apicv_active)
+-		return -1;
+-
+-	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+-		return 0;
+-
+-	/* If a previous notification has sent the IPI, nothing to do.  */
+-	if (pi_test_and_set_on(&vmx->pi_desc))
+-		return 0;
+-
+-	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
+-		kvm_vcpu_kick(vcpu);
+-
+-	return 0;
+-}
+-
+-/*
+- * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+- * will not change in the lifetime of the guest.
+- * Note that host-state that does change is set elsewhere. E.g., host-state
+- * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+- */
+-static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+-{
+-	u32 low32, high32;
+-	unsigned long tmpl;
+-	struct desc_ptr dt;
+-	unsigned long cr0, cr3, cr4;
+-
+-	cr0 = read_cr0();
+-	WARN_ON(cr0 & X86_CR0_TS);
+-	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
+-
+-	/*
+-	 * Save the most likely value for this task's CR3 in the VMCS.
+-	 * We can't use __get_current_cr3_fast() because we're not atomic.
+-	 */
+-	cr3 = __read_cr3();
+-	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
+-	vmx->loaded_vmcs->host_state.cr3 = cr3;
+-
+-	/* Save the most likely value for this task's CR4 in the VMCS. */
+-	cr4 = cr4_read_shadow();
+-	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
+-	vmx->loaded_vmcs->host_state.cr4 = cr4;
+-
+-	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
+-#ifdef CONFIG_X86_64
+-	/*
+-	 * Load null selectors, so we can avoid reloading them in
+-	 * vmx_prepare_switch_to_host(), in case userspace uses
+-	 * the null selectors too (the expected case).
+-	 */
+-	vmcs_write16(HOST_DS_SELECTOR, 0);
+-	vmcs_write16(HOST_ES_SELECTOR, 0);
+-#else
+-	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+-	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+-#endif
+-	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+-	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
+-
+-	store_idt(&dt);
+-	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
+-	vmx->host_idt_base = dt.address;
+-
+-	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
+-
+-	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+-	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+-	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+-	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
+-
+-	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+-		rdmsr(MSR_IA32_CR_PAT, low32, high32);
+-		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+-	}
+-}
+-
+-static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+-{
+-	BUILD_BUG_ON(KVM_CR4_GUEST_OWNED_BITS & ~KVM_POSSIBLE_CR4_GUEST_BITS);
+-
+-	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+-	if (enable_ept)
+-		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+-	if (is_guest_mode(&vmx->vcpu))
+-		vmx->vcpu.arch.cr4_guest_owned_bits &=
+-			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+-	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+-}
+-
+-static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+-{
+-	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+-
+-	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
+-		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+-
+-	if (!enable_vnmi)
+-		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
+-
+-	/* Enable the preemption timer dynamically */
+-	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+-	return pin_based_exec_ctrl;
+-}
+-
+-static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+-	if (cpu_has_secondary_exec_ctrls()) {
+-		if (kvm_vcpu_apicv_active(vcpu))
+-			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+-				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+-		else
+-			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+-					SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+-	}
+-
+-	if (cpu_has_vmx_msr_bitmap())
+-		vmx_update_msr_bitmap(vcpu);
+-}
+-
+-static u32 vmx_exec_control(struct vcpu_vmx *vmx)
+-{
+-	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+-
+-	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+-		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+-
+-	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
+-		exec_control &= ~CPU_BASED_TPR_SHADOW;
+-#ifdef CONFIG_X86_64
+-		exec_control |= CPU_BASED_CR8_STORE_EXITING |
+-				CPU_BASED_CR8_LOAD_EXITING;
+-#endif
+-	}
+-	if (!enable_ept)
+-		exec_control |= CPU_BASED_CR3_STORE_EXITING |
+-				CPU_BASED_CR3_LOAD_EXITING  |
+-				CPU_BASED_INVLPG_EXITING;
+-	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
+-		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
+-				CPU_BASED_MONITOR_EXITING);
+-	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
+-		exec_control &= ~CPU_BASED_HLT_EXITING;
+-	return exec_control;
+-}
+-
+-static bool vmx_rdrand_supported(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_RDRAND_EXITING;
+-}
+-
+-static bool vmx_rdseed_supported(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_RDSEED_EXITING;
+-}
+-
+-static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
+-{
+-	struct kvm_vcpu *vcpu = &vmx->vcpu;
+-
+-	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+-
+-	if (!cpu_need_virtualize_apic_accesses(vcpu))
+-		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+-	if (vmx->vpid == 0)
+-		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+-	if (!enable_ept) {
+-		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+-		enable_unrestricted_guest = 0;
+-	}
+-	if (!enable_unrestricted_guest)
+-		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+-	if (kvm_pause_in_guest(vmx->vcpu.kvm))
+-		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+-	if (!kvm_vcpu_apicv_active(vcpu))
+-		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+-	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+-
+-	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
+-	 * in vmx_set_cr4.  */
+-	exec_control &= ~SECONDARY_EXEC_DESC;
+-
+-	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+-	   (handle_vmptrld).
+-	   We can NOT enable shadow_vmcs here because we don't have yet
+-	   a current VMCS12
+-	*/
+-	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+-
+-	if (!enable_pml)
+-		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+-
+-	if (vmx_xsaves_supported()) {
+-		/* Exposing XSAVES only when XSAVE is exposed */
+-		bool xsaves_enabled =
+-			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+-			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
+-
+-		if (!xsaves_enabled)
+-			exec_control &= ~SECONDARY_EXEC_XSAVES;
+-
+-		if (nested) {
+-			if (xsaves_enabled)
+-				vmx->nested.msrs.secondary_ctls_high |=
+-					SECONDARY_EXEC_XSAVES;
+-			else
+-				vmx->nested.msrs.secondary_ctls_high &=
+-					~SECONDARY_EXEC_XSAVES;
+-		}
+-	}
+-
+-	if (vmx_rdtscp_supported()) {
+-		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
+-		if (!rdtscp_enabled)
+-			exec_control &= ~SECONDARY_EXEC_RDTSCP;
+-
+-		if (nested) {
+-			if (rdtscp_enabled)
+-				vmx->nested.msrs.secondary_ctls_high |=
+-					SECONDARY_EXEC_RDTSCP;
+-			else
+-				vmx->nested.msrs.secondary_ctls_high &=
+-					~SECONDARY_EXEC_RDTSCP;
+-		}
+-	}
+-
+-	if (vmx_invpcid_supported()) {
+-		/* Exposing INVPCID only when PCID is exposed */
+-		bool invpcid_enabled =
+-			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
+-			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
+-
+-		if (!invpcid_enabled) {
+-			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+-			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
+-		}
+-
+-		if (nested) {
+-			if (invpcid_enabled)
+-				vmx->nested.msrs.secondary_ctls_high |=
+-					SECONDARY_EXEC_ENABLE_INVPCID;
+-			else
+-				vmx->nested.msrs.secondary_ctls_high &=
+-					~SECONDARY_EXEC_ENABLE_INVPCID;
+-		}
+-	}
+-
+-	if (vmx_rdrand_supported()) {
+-		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
+-		if (rdrand_enabled)
+-			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
+-
+-		if (nested) {
+-			if (rdrand_enabled)
+-				vmx->nested.msrs.secondary_ctls_high |=
+-					SECONDARY_EXEC_RDRAND_EXITING;
+-			else
+-				vmx->nested.msrs.secondary_ctls_high &=
+-					~SECONDARY_EXEC_RDRAND_EXITING;
+-		}
+-	}
+-
+-	if (vmx_rdseed_supported()) {
+-		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
+-		if (rdseed_enabled)
+-			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
+-
+-		if (nested) {
+-			if (rdseed_enabled)
+-				vmx->nested.msrs.secondary_ctls_high |=
+-					SECONDARY_EXEC_RDSEED_EXITING;
+-			else
+-				vmx->nested.msrs.secondary_ctls_high &=
+-					~SECONDARY_EXEC_RDSEED_EXITING;
+-		}
+-	}
+-
+-	vmx->secondary_exec_control = exec_control;
+-}
+-
+-static void ept_set_mmio_spte_mask(void)
+-{
+-	/*
+-	 * EPT Misconfigurations can be generated if the value of bits 2:0
+-	 * of an EPT paging-structure entry is 110b (write/execute).
+-	 */
+-	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
+-				   VMX_EPT_MISCONFIG_WX_VALUE);
+-}
+-
+-#define VMX_XSS_EXIT_BITMAP 0
+-/*
+- * Sets up the vmcs for emulated real mode.
+- */
+-static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
+-{
+-	int i;
+-
+-	if (enable_shadow_vmcs) {
+-		/*
+-		 * At vCPU creation, "VMWRITE to any supported field
+-		 * in the VMCS" is supported, so use the more
+-		 * permissive vmx_vmread_bitmap to specify both read
+-		 * and write permissions for the shadow VMCS.
+-		 */
+-		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+-		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
+-	}
+-	if (cpu_has_vmx_msr_bitmap())
+-		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
+-
+-	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+-
+-	/* Control */
+-	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+-	vmx->hv_deadline_tsc = -1;
+-
+-	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
+-
+-	if (cpu_has_secondary_exec_ctrls()) {
+-		vmx_compute_secondary_exec_control(vmx);
+-		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+-			     vmx->secondary_exec_control);
+-	}
+-
+-	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
+-		vmcs_write64(EOI_EXIT_BITMAP0, 0);
+-		vmcs_write64(EOI_EXIT_BITMAP1, 0);
+-		vmcs_write64(EOI_EXIT_BITMAP2, 0);
+-		vmcs_write64(EOI_EXIT_BITMAP3, 0);
+-
+-		vmcs_write16(GUEST_INTR_STATUS, 0);
+-
+-		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+-		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+-	}
+-
+-	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
+-		vmcs_write32(PLE_GAP, ple_gap);
+-		vmx->ple_window = ple_window;
+-		vmx->ple_window_dirty = true;
+-	}
+-
+-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+-	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
+-
+-	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
+-	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
+-	vmx_set_constant_host_state(vmx);
+-	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+-	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+-
+-	if (cpu_has_vmx_vmfunc())
+-		vmcs_write64(VM_FUNCTION_CONTROL, 0);
+-
+-	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+-	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+-	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+-
+-	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+-		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+-
+-	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
+-		u32 index = vmx_msr_index[i];
+-		u32 data_low, data_high;
+-		int j = vmx->nmsrs;
+-
+-		if (rdmsr_safe(index, &data_low, &data_high) < 0)
+-			continue;
+-		if (wrmsr_safe(index, data_low, data_high) < 0)
+-			continue;
+-		vmx->guest_msrs[j].index = i;
+-		vmx->guest_msrs[j].data = 0;
+-		vmx->guest_msrs[j].mask = -1ull;
+-		++vmx->nmsrs;
+-	}
+-
+-	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
+-
+-	/* 22.2.1, 20.8.1 */
+-	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
+-
+-	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
+-	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
+-
+-	set_cr4_guest_host_mask(vmx);
+-
+-	if (vmx_xsaves_supported())
+-		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+-
+-	if (enable_pml) {
+-		ASSERT(vmx->pml_pg);
+-		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+-		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+-	}
+-
+-	if (cpu_has_vmx_encls_vmexit())
+-		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+-}
+-
+-static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct msr_data apic_base_msr;
+-	u64 cr0;
+-
+-	vmx->rmode.vm86_active = 0;
+-	vmx->spec_ctrl = 0;
+-
+-	vcpu->arch.microcode_version = 0x100000000ULL;
+-	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+-	kvm_set_cr8(vcpu, 0);
+-
+-	if (!init_event) {
+-		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
+-				     MSR_IA32_APICBASE_ENABLE;
+-		if (kvm_vcpu_is_reset_bsp(vcpu))
+-			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+-		apic_base_msr.host_initiated = true;
+-		kvm_set_apic_base(vcpu, &apic_base_msr);
+-	}
+-
+-	vmx_segment_cache_clear(vmx);
+-
+-	seg_setup(VCPU_SREG_CS);
+-	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+-	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
+-
+-	seg_setup(VCPU_SREG_DS);
+-	seg_setup(VCPU_SREG_ES);
+-	seg_setup(VCPU_SREG_FS);
+-	seg_setup(VCPU_SREG_GS);
+-	seg_setup(VCPU_SREG_SS);
+-
+-	vmcs_write16(GUEST_TR_SELECTOR, 0);
+-	vmcs_writel(GUEST_TR_BASE, 0);
+-	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+-	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+-
+-	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+-	vmcs_writel(GUEST_LDTR_BASE, 0);
+-	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+-	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+-
+-	if (!init_event) {
+-		vmcs_write32(GUEST_SYSENTER_CS, 0);
+-		vmcs_writel(GUEST_SYSENTER_ESP, 0);
+-		vmcs_writel(GUEST_SYSENTER_EIP, 0);
+-		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+-	}
+-
+-	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
+-	kvm_rip_write(vcpu, 0xfff0);
+-
+-	vmcs_writel(GUEST_GDTR_BASE, 0);
+-	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+-
+-	vmcs_writel(GUEST_IDTR_BASE, 0);
+-	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+-
+-	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+-	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+-	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+-	if (kvm_mpx_supported())
+-		vmcs_write64(GUEST_BNDCFGS, 0);
+-
+-	setup_msrs(vmx);
+-
+-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
+-
+-	if (cpu_has_vmx_tpr_shadow() && !init_event) {
+-		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+-		if (cpu_need_tpr_shadow(vcpu))
+-			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+-				     __pa(vcpu->arch.apic->regs));
+-		vmcs_write32(TPR_THRESHOLD, 0);
+-	}
+-
+-	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+-
+-	if (vmx->vpid != 0)
+-		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+-
+-	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+-	vmx->vcpu.arch.cr0 = cr0;
+-	vmx_set_cr0(vcpu, cr0); /* enter rmode */
+-	vmx_set_cr4(vcpu, 0);
+-	vmx_set_efer(vcpu, 0);
+-
+-	update_exception_bitmap(vcpu);
+-
+-	vpid_sync_context(vmx->vpid);
+-	if (init_event)
+-		vmx_clear_hlt(vcpu);
+-
+-	vmx_update_fb_clear_dis(vcpu, vmx);
+-}
+-
+-/*
+- * In nested virtualization, check if L1 asked to exit on external interrupts.
+- * For most existing hypervisors, this will always return true.
+- */
+-static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+-{
+-	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+-		PIN_BASED_EXT_INTR_MASK;
+-}
+-
+-/*
+- * In nested virtualization, check if L1 has set
+- * VM_EXIT_ACK_INTR_ON_EXIT
+- */
+-static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+-{
+-	return get_vmcs12(vcpu)->vm_exit_controls &
+-		VM_EXIT_ACK_INTR_ON_EXIT;
+-}
+-
+-static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+-{
+-	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
+-}
+-
+-static void enable_irq_window(struct kvm_vcpu *vcpu)
+-{
+-	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+-		      CPU_BASED_VIRTUAL_INTR_PENDING);
+-}
+-
+-static void enable_nmi_window(struct kvm_vcpu *vcpu)
+-{
+-	if (!enable_vnmi ||
+-	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+-		enable_irq_window(vcpu);
+-		return;
+-	}
+-
+-	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+-		      CPU_BASED_VIRTUAL_NMI_PENDING);
+-}
+-
+-static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	uint32_t intr;
+-	int irq = vcpu->arch.interrupt.nr;
+-
+-	trace_kvm_inj_virq(irq);
+-
+-	++vcpu->stat.irq_injections;
+-	if (vmx->rmode.vm86_active) {
+-		int inc_eip = 0;
+-		if (vcpu->arch.interrupt.soft)
+-			inc_eip = vcpu->arch.event_exit_inst_len;
+-		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
+-			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+-		return;
+-	}
+-	intr = irq | INTR_INFO_VALID_MASK;
+-	if (vcpu->arch.interrupt.soft) {
+-		intr |= INTR_TYPE_SOFT_INTR;
+-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+-			     vmx->vcpu.arch.event_exit_inst_len);
+-	} else
+-		intr |= INTR_TYPE_EXT_INTR;
+-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+-
+-	vmx_clear_hlt(vcpu);
+-}
+-
+-static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (!enable_vnmi) {
+-		/*
+-		 * Tracking the NMI-blocked state in software is built upon
+-		 * finding the next open IRQ window. This, in turn, depends on
+-		 * well-behaving guests: They have to keep IRQs disabled at
+-		 * least as long as the NMI handler runs. Otherwise we may
+-		 * cause NMI nesting, maybe breaking the guest. But as this is
+-		 * highly unlikely, we can live with the residual risk.
+-		 */
+-		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
+-		vmx->loaded_vmcs->vnmi_blocked_time = 0;
+-	}
+-
+-	++vcpu->stat.nmi_injections;
+-	vmx->loaded_vmcs->nmi_known_unmasked = false;
+-
+-	if (vmx->rmode.vm86_active) {
+-		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
+-			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+-		return;
+-	}
+-
+-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+-			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+-
+-	vmx_clear_hlt(vcpu);
+-}
+-
+-static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	bool masked;
+-
+-	if (!enable_vnmi)
+-		return vmx->loaded_vmcs->soft_vnmi_blocked;
+-	if (vmx->loaded_vmcs->nmi_known_unmasked)
+-		return false;
+-	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+-	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+-	return masked;
+-}
+-
+-static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (!enable_vnmi) {
+-		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
+-			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
+-			vmx->loaded_vmcs->vnmi_blocked_time = 0;
+-		}
+-	} else {
+-		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+-		if (masked)
+-			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+-				      GUEST_INTR_STATE_NMI);
+-		else
+-			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+-					GUEST_INTR_STATE_NMI);
+-	}
+-}
+-
+-static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
+-{
+-	if (to_vmx(vcpu)->nested.nested_run_pending)
+-		return 0;
+-
+-	if (!enable_vnmi &&
+-	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
+-		return 0;
+-
+-	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+-		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
+-		   | GUEST_INTR_STATE_NMI));
+-}
+-
+-static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
+-{
+-	if (to_vmx(vcpu)->nested.nested_run_pending)
+-		return false;
+-
+-	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
+-		return true;
+-
+-	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
+-		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+-			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+-}
+-
+-static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+-{
+-	int ret;
+-
+-	if (enable_unrestricted_guest)
+-		return 0;
+-
+-	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
+-				    PAGE_SIZE * 3);
+-	if (ret)
+-		return ret;
+-	to_kvm_vmx(kvm)->tss_addr = addr;
+-	return init_rmode_tss(kvm);
+-}
+-
+-static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
+-{
+-	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
+-	return 0;
+-}
+-
+-static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+-{
+-	switch (vec) {
+-	case BP_VECTOR:
+-		/*
+-		 * Update instruction length as we may reinject the exception
+-		 * from user space while in guest debugging mode.
+-		 */
+-		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+-			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+-		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+-			return false;
+-		/* fall through */
+-	case DB_VECTOR:
+-		if (vcpu->guest_debug &
+-			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+-			return false;
+-		/* fall through */
+-	case DE_VECTOR:
+-	case OF_VECTOR:
+-	case BR_VECTOR:
+-	case UD_VECTOR:
+-	case DF_VECTOR:
+-	case SS_VECTOR:
+-	case GP_VECTOR:
+-	case MF_VECTOR:
+-		return true;
+-	break;
+-	}
+-	return false;
+-}
+-
+-static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+-				  int vec, u32 err_code)
+-{
+-	/*
+-	 * Instruction with address size override prefix opcode 0x67
+-	 * Cause the #SS fault with 0 error code in VM86 mode.
+-	 */
+-	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+-		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
+-			if (vcpu->arch.halt_request) {
+-				vcpu->arch.halt_request = 0;
+-				return kvm_vcpu_halt(vcpu);
+-			}
+-			return 1;
+-		}
+-		return 0;
+-	}
+-
+-	/*
+-	 * Forward all other exceptions that are valid in real mode.
+-	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+-	 *        the required debugging infrastructure rework.
+-	 */
+-	kvm_queue_exception(vcpu, vec);
+-	return 1;
+-}
+-
+-/*
+- * Trigger machine check on the host. We assume all the MSRs are already set up
+- * by the CPU and that we still run on the same CPU as the MCE occurred on.
+- * We pass a fake environment to the machine check handler because we want
+- * the guest to be always treated like user space, no matter what context
+- * it used internally.
+- */
+-static void kvm_machine_check(void)
+-{
+-#if defined(CONFIG_X86_MCE)
+-	struct pt_regs regs = {
+-		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
+-		.flags = X86_EFLAGS_IF,
+-	};
+-
+-	do_machine_check(&regs, 0);
+-#endif
+-}
+-
+-static int handle_machine_check(struct kvm_vcpu *vcpu)
+-{
+-	/* already handled by vcpu_run */
+-	return 1;
+-}
+-
+-static int handle_exception(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct kvm_run *kvm_run = vcpu->run;
+-	u32 intr_info, ex_no, error_code;
+-	unsigned long cr2, rip, dr6;
+-	u32 vect_info;
+-	enum emulation_result er;
+-
+-	vect_info = vmx->idt_vectoring_info;
+-	intr_info = vmx->exit_intr_info;
+-
+-	if (is_machine_check(intr_info))
+-		return handle_machine_check(vcpu);
+-
+-	if (is_nmi(intr_info))
+-		return 1;  /* already handled by vmx_vcpu_run() */
+-
+-	if (is_invalid_opcode(intr_info))
+-		return handle_ud(vcpu);
+-
+-	error_code = 0;
+-	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+-		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+-
+-	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
+-		WARN_ON_ONCE(!enable_vmware_backdoor);
+-		er = kvm_emulate_instruction(vcpu,
+-			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
+-		if (er == EMULATE_USER_EXIT)
+-			return 0;
+-		else if (er != EMULATE_DONE)
+-			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
+-		return 1;
+-	}
+-
+-	/*
+-	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+-	 * MMIO, it is better to report an internal error.
+-	 * See the comments in vmx_handle_exit.
+-	 */
+-	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+-	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+-		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+-		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+-		vcpu->run->internal.ndata = 3;
+-		vcpu->run->internal.data[0] = vect_info;
+-		vcpu->run->internal.data[1] = intr_info;
+-		vcpu->run->internal.data[2] = error_code;
+-		return 0;
+-	}
+-
+-	if (is_page_fault(intr_info)) {
+-		cr2 = vmcs_readl(EXIT_QUALIFICATION);
+-		/* EPT won't cause page fault directly */
+-		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
+-		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
+-	}
+-
+-	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+-
+-	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+-		return handle_rmode_exception(vcpu, ex_no, error_code);
+-
+-	switch (ex_no) {
+-	case AC_VECTOR:
+-		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
+-		return 1;
+-	case DB_VECTOR:
+-		dr6 = vmcs_readl(EXIT_QUALIFICATION);
+-		if (!(vcpu->guest_debug &
+-		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+-			vcpu->arch.dr6 &= ~15;
+-			vcpu->arch.dr6 |= dr6 | DR6_RTM;
+-			if (is_icebp(intr_info))
+-				skip_emulated_instruction(vcpu);
+-
+-			kvm_queue_exception(vcpu, DB_VECTOR);
+-			return 1;
+-		}
+-		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+-		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+-		/* fall through */
+-	case BP_VECTOR:
+-		/*
+-		 * Update instruction length as we may reinject #BP from
+-		 * user space while in guest debugging mode. Reading it for
+-		 * #DB as well causes no harm, it is not used in that case.
+-		 */
+-		vmx->vcpu.arch.event_exit_inst_len =
+-			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+-		kvm_run->exit_reason = KVM_EXIT_DEBUG;
+-		rip = kvm_rip_read(vcpu);
+-		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+-		kvm_run->debug.arch.exception = ex_no;
+-		break;
+-	default:
+-		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+-		kvm_run->ex.exception = ex_no;
+-		kvm_run->ex.error_code = error_code;
+-		break;
+-	}
+-	return 0;
+-}
+-
+-static int handle_external_interrupt(struct kvm_vcpu *vcpu)
+-{
+-	++vcpu->stat.irq_exits;
+-	return 1;
+-}
+-
+-static int handle_triple_fault(struct kvm_vcpu *vcpu)
+-{
+-	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+-	vcpu->mmio_needed = 0;
+-	return 0;
+-}
+-
+-static int handle_io(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification;
+-	int size, in, string;
+-	unsigned port;
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	string = (exit_qualification & 16) != 0;
+-
+-	++vcpu->stat.io_exits;
+-
+-	if (string)
+-		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+-
+-	port = exit_qualification >> 16;
+-	size = (exit_qualification & 7) + 1;
+-	in = (exit_qualification & 8) != 0;
+-
+-	return kvm_fast_pio(vcpu, size, port, in);
+-}
+-
+-static void
+-vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+-{
+-	/*
+-	 * Patch in the VMCALL instruction:
+-	 */
+-	hypercall[0] = 0x0f;
+-	hypercall[1] = 0x01;
+-	hypercall[2] = 0xc1;
+-}
+-
+-/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+-static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	if (is_guest_mode(vcpu)) {
+-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-		unsigned long orig_val = val;
+-
+-		/*
+-		 * We get here when L2 changed cr0 in a way that did not change
+-		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+-		 * but did change L0 shadowed bits. So we first calculate the
+-		 * effective cr0 value that L1 would like to write into the
+-		 * hardware. It consists of the L2-owned bits from the new
+-		 * value combined with the L1-owned bits from L1's guest_cr0.
+-		 */
+-		val = (val & ~vmcs12->cr0_guest_host_mask) |
+-			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+-
+-		if (!nested_guest_cr0_valid(vcpu, val))
+-			return 1;
+-
+-		if (kvm_set_cr0(vcpu, val))
+-			return 1;
+-		vmcs_writel(CR0_READ_SHADOW, orig_val);
+-		return 0;
+-	} else {
+-		if (to_vmx(vcpu)->nested.vmxon &&
+-		    !nested_host_cr0_valid(vcpu, val))
+-			return 1;
+-
+-		return kvm_set_cr0(vcpu, val);
+-	}
+-}
+-
+-static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	if (is_guest_mode(vcpu)) {
+-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-		unsigned long orig_val = val;
+-
+-		/* analogously to handle_set_cr0 */
+-		val = (val & ~vmcs12->cr4_guest_host_mask) |
+-			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+-		if (kvm_set_cr4(vcpu, val))
+-			return 1;
+-		vmcs_writel(CR4_READ_SHADOW, orig_val);
+-		return 0;
+-	} else
+-		return kvm_set_cr4(vcpu, val);
+-}
+-
+-static int handle_desc(struct kvm_vcpu *vcpu)
+-{
+-	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
+-	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+-}
+-
+-static int handle_cr(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification, val;
+-	int cr;
+-	int reg;
+-	int err;
+-	int ret;
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	cr = exit_qualification & 15;
+-	reg = (exit_qualification >> 8) & 15;
+-	switch ((exit_qualification >> 4) & 3) {
+-	case 0: /* mov to cr */
+-		val = kvm_register_readl(vcpu, reg);
+-		trace_kvm_cr_write(cr, val);
+-		switch (cr) {
+-		case 0:
+-			err = handle_set_cr0(vcpu, val);
+-			return kvm_complete_insn_gp(vcpu, err);
+-		case 3:
+-			WARN_ON_ONCE(enable_unrestricted_guest);
+-			err = kvm_set_cr3(vcpu, val);
+-			return kvm_complete_insn_gp(vcpu, err);
+-		case 4:
+-			err = handle_set_cr4(vcpu, val);
+-			return kvm_complete_insn_gp(vcpu, err);
+-		case 8: {
+-				u8 cr8_prev = kvm_get_cr8(vcpu);
+-				u8 cr8 = (u8)val;
+-				err = kvm_set_cr8(vcpu, cr8);
+-				ret = kvm_complete_insn_gp(vcpu, err);
+-				if (lapic_in_kernel(vcpu))
+-					return ret;
+-				if (cr8_prev <= cr8)
+-					return ret;
+-				/*
+-				 * TODO: we might be squashing a
+-				 * KVM_GUESTDBG_SINGLESTEP-triggered
+-				 * KVM_EXIT_DEBUG here.
+-				 */
+-				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+-				return 0;
+-			}
+-		}
+-		break;
+-	case 2: /* clts */
+-		WARN_ONCE(1, "Guest should always own CR0.TS");
+-		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+-		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+-		return kvm_skip_emulated_instruction(vcpu);
+-	case 1: /*mov from cr*/
+-		switch (cr) {
+-		case 3:
+-			WARN_ON_ONCE(enable_unrestricted_guest);
+-			val = kvm_read_cr3(vcpu);
+-			kvm_register_write(vcpu, reg, val);
+-			trace_kvm_cr_read(cr, val);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		case 8:
+-			val = kvm_get_cr8(vcpu);
+-			kvm_register_write(vcpu, reg, val);
+-			trace_kvm_cr_read(cr, val);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-		break;
+-	case 3: /* lmsw */
+-		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+-		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+-		kvm_lmsw(vcpu, val);
+-
+-		return kvm_skip_emulated_instruction(vcpu);
+-	default:
+-		break;
+-	}
+-	vcpu->run->exit_reason = 0;
+-	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+-	       (int)(exit_qualification >> 4) & 3, cr);
+-	return 0;
+-}
+-
+-static int handle_dr(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification;
+-	int dr, dr7, reg;
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+-
+-	/* First, if DR does not exist, trigger UD */
+-	if (!kvm_require_dr(vcpu, dr))
+-		return 1;
+-
+-	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
+-	if (!kvm_require_cpl(vcpu, 0))
+-		return 1;
+-	dr7 = vmcs_readl(GUEST_DR7);
+-	if (dr7 & DR7_GD) {
+-		/*
+-		 * As the vm-exit takes precedence over the debug trap, we
+-		 * need to emulate the latter, either for the host or the
+-		 * guest debugging itself.
+-		 */
+-		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+-			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
+-			vcpu->run->debug.arch.dr7 = dr7;
+-			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+-			vcpu->run->debug.arch.exception = DB_VECTOR;
+-			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+-			return 0;
+-		} else {
+-			vcpu->arch.dr6 &= ~15;
+-			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
+-			kvm_queue_exception(vcpu, DB_VECTOR);
+-			return 1;
+-		}
+-	}
+-
+-	if (vcpu->guest_debug == 0) {
+-		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+-				CPU_BASED_MOV_DR_EXITING);
+-
+-		/*
+-		 * No more DR vmexits; force a reload of the debug registers
+-		 * and reenter on this instruction.  The next vmexit will
+-		 * retrieve the full state of the debug registers.
+-		 */
+-		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+-		return 1;
+-	}
+-
+-	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+-	if (exit_qualification & TYPE_MOV_FROM_DR) {
+-		unsigned long val;
+-
+-		if (kvm_get_dr(vcpu, dr, &val))
+-			return 1;
+-		kvm_register_write(vcpu, reg, val);
+-	} else
+-		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+-			return 1;
+-
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
+-{
+-	return vcpu->arch.dr6;
+-}
+-
+-static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-}
+-
+-static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+-{
+-	get_debugreg(vcpu->arch.db[0], 0);
+-	get_debugreg(vcpu->arch.db[1], 1);
+-	get_debugreg(vcpu->arch.db[2], 2);
+-	get_debugreg(vcpu->arch.db[3], 3);
+-	get_debugreg(vcpu->arch.dr6, 6);
+-	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+-
+-	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+-	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
+-}
+-
+-static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	vmcs_writel(GUEST_DR7, val);
+-}
+-
+-static int handle_cpuid(struct kvm_vcpu *vcpu)
+-{
+-	return kvm_emulate_cpuid(vcpu);
+-}
+-
+-static int handle_rdmsr(struct kvm_vcpu *vcpu)
+-{
+-	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+-	struct msr_data msr_info;
+-
+-	msr_info.index = ecx;
+-	msr_info.host_initiated = false;
+-	if (vmx_get_msr(vcpu, &msr_info)) {
+-		trace_kvm_msr_read_ex(ecx);
+-		kvm_inject_gp(vcpu, 0);
+-		return 1;
+-	}
+-
+-	trace_kvm_msr_read(ecx, msr_info.data);
+-
+-	/* FIXME: handling of bits 32:63 of rax, rdx */
+-	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
+-	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_wrmsr(struct kvm_vcpu *vcpu)
+-{
+-	struct msr_data msr;
+-	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+-	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
+-		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
+-
+-	msr.data = data;
+-	msr.index = ecx;
+-	msr.host_initiated = false;
+-	if (kvm_set_msr(vcpu, &msr) != 0) {
+-		trace_kvm_msr_write_ex(ecx, data);
+-		kvm_inject_gp(vcpu, 0);
+-		return 1;
+-	}
+-
+-	trace_kvm_msr_write(ecx, data);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+-{
+-	kvm_apic_update_ppr(vcpu);
+-	return 1;
+-}
+-
+-static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+-{
+-	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+-			CPU_BASED_VIRTUAL_INTR_PENDING);
+-
+-	kvm_make_request(KVM_REQ_EVENT, vcpu);
+-
+-	++vcpu->stat.irq_window_exits;
+-	return 1;
+-}
+-
+-static int handle_halt(struct kvm_vcpu *vcpu)
+-{
+-	return kvm_emulate_halt(vcpu);
+-}
+-
+-static int handle_vmcall(struct kvm_vcpu *vcpu)
+-{
+-	return kvm_emulate_hypercall(vcpu);
+-}
+-
+-static int handle_invd(struct kvm_vcpu *vcpu)
+-{
+-	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+-}
+-
+-static int handle_invlpg(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-
+-	kvm_mmu_invlpg(vcpu, exit_qualification);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_rdpmc(struct kvm_vcpu *vcpu)
+-{
+-	int err;
+-
+-	err = kvm_rdpmc(vcpu);
+-	return kvm_complete_insn_gp(vcpu, err);
+-}
+-
+-static int handle_wbinvd(struct kvm_vcpu *vcpu)
+-{
+-	return kvm_emulate_wbinvd(vcpu);
+-}
+-
+-static int handle_xsetbv(struct kvm_vcpu *vcpu)
+-{
+-	u64 new_bv = kvm_read_edx_eax(vcpu);
+-	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
+-
+-	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+-		return kvm_skip_emulated_instruction(vcpu);
+-	return 1;
+-}
+-
+-static int handle_xsaves(struct kvm_vcpu *vcpu)
+-{
+-	kvm_skip_emulated_instruction(vcpu);
+-	WARN(1, "this should never happen\n");
+-	return 1;
+-}
+-
+-static int handle_xrstors(struct kvm_vcpu *vcpu)
+-{
+-	kvm_skip_emulated_instruction(vcpu);
+-	WARN(1, "this should never happen\n");
+-	return 1;
+-}
+-
+-static int handle_apic_access(struct kvm_vcpu *vcpu)
+-{
+-	if (likely(fasteoi)) {
+-		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-		int access_type, offset;
+-
+-		access_type = exit_qualification & APIC_ACCESS_TYPE;
+-		offset = exit_qualification & APIC_ACCESS_OFFSET;
+-		/*
+-		 * Sane guest uses MOV to write EOI, with written value
+-		 * not cared. So make a short-circuit here by avoiding
+-		 * heavy instruction emulation.
+-		 */
+-		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+-		    (offset == APIC_EOI)) {
+-			kvm_lapic_set_eoi(vcpu);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-	}
+-	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+-}
+-
+-static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	int vector = exit_qualification & 0xff;
+-
+-	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+-	kvm_apic_set_eoi_accelerated(vcpu, vector);
+-	return 1;
+-}
+-
+-static int handle_apic_write(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	u32 offset = exit_qualification & 0xfff;
+-
+-	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
+-	kvm_apic_write_nodecode(vcpu, offset);
+-	return 1;
+-}
+-
+-static int handle_task_switch(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned long exit_qualification;
+-	bool has_error_code = false;
+-	u32 error_code = 0;
+-	u16 tss_selector;
+-	int reason, type, idt_v, idt_index;
+-
+-	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+-	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+-	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-
+-	reason = (u32)exit_qualification >> 30;
+-	if (reason == TASK_SWITCH_GATE && idt_v) {
+-		switch (type) {
+-		case INTR_TYPE_NMI_INTR:
+-			vcpu->arch.nmi_injected = false;
+-			vmx_set_nmi_mask(vcpu, true);
+-			break;
+-		case INTR_TYPE_EXT_INTR:
+-		case INTR_TYPE_SOFT_INTR:
+-			kvm_clear_interrupt_queue(vcpu);
+-			break;
+-		case INTR_TYPE_HARD_EXCEPTION:
+-			if (vmx->idt_vectoring_info &
+-			    VECTORING_INFO_DELIVER_CODE_MASK) {
+-				has_error_code = true;
+-				error_code =
+-					vmcs_read32(IDT_VECTORING_ERROR_CODE);
+-			}
+-			/* fall through */
+-		case INTR_TYPE_SOFT_EXCEPTION:
+-			kvm_clear_exception_queue(vcpu);
+-			break;
+-		default:
+-			break;
+-		}
+-	}
+-	tss_selector = exit_qualification;
+-
+-	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+-		       type != INTR_TYPE_EXT_INTR &&
+-		       type != INTR_TYPE_NMI_INTR))
+-		skip_emulated_instruction(vcpu);
+-
+-	if (kvm_task_switch(vcpu, tss_selector,
+-			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
+-			    has_error_code, error_code) == EMULATE_FAIL) {
+-		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+-		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+-		vcpu->run->internal.ndata = 0;
+-		return 0;
+-	}
+-
+-	/*
+-	 * TODO: What about debug traps on tss switch?
+-	 *       Are we supposed to inject them and update dr6?
+-	 */
+-
+-	return 1;
+-}
+-
+-static int handle_ept_violation(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification;
+-	gpa_t gpa;
+-	u64 error_code;
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-
+-	/*
+-	 * EPT violation happened while executing iret from NMI,
+-	 * "blocked by NMI" bit has to be set before next VM entry.
+-	 * There are errata that may cause this bit to not be set:
+-	 * AAK134, BY25.
+-	 */
+-	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+-			enable_vnmi &&
+-			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
+-		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+-
+-	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+-	trace_kvm_page_fault(gpa, exit_qualification);
+-
+-	/* Is it a read fault? */
+-	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
+-		     ? PFERR_USER_MASK : 0;
+-	/* Is it a write fault? */
+-	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
+-		      ? PFERR_WRITE_MASK : 0;
+-	/* Is it a fetch fault? */
+-	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
+-		      ? PFERR_FETCH_MASK : 0;
+-	/* ept page table entry is present? */
+-	error_code |= (exit_qualification &
+-		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
+-			EPT_VIOLATION_EXECUTABLE))
+-		      ? PFERR_PRESENT_MASK : 0;
+-
+-	error_code |= (exit_qualification & 0x100) != 0 ?
+-	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
+-
+-	vcpu->arch.exit_qualification = exit_qualification;
+-	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+-}
+-
+-static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+-{
+-	gpa_t gpa;
+-
+-	/*
+-	 * A nested guest cannot optimize MMIO vmexits, because we have an
+-	 * nGPA here instead of the required GPA.
+-	 */
+-	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+-	if (!is_guest_mode(vcpu) &&
+-	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+-		trace_kvm_fast_mmio(gpa);
+-		/*
+-		 * Doing kvm_skip_emulated_instruction() depends on undefined
+-		 * behavior: Intel's manual doesn't mandate
+-		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
+-		 * occurs and while on real hardware it was observed to be set,
+-		 * other hypervisors (namely Hyper-V) don't set it, we end up
+-		 * advancing IP with some random value. Disable fast mmio when
+-		 * running nested and keep it for real hardware in hope that
+-		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
+-		 */
+-		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
+-			return kvm_skip_emulated_instruction(vcpu);
+-		else
+-			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
+-								EMULATE_DONE;
+-	}
+-
+-	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
+-}
+-
+-static int handle_nmi_window(struct kvm_vcpu *vcpu)
+-{
+-	WARN_ON_ONCE(!enable_vnmi);
+-	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+-			CPU_BASED_VIRTUAL_NMI_PENDING);
+-	++vcpu->stat.nmi_window_exits;
+-	kvm_make_request(KVM_REQ_EVENT, vcpu);
+-
+-	return 1;
+-}
+-
+-static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	enum emulation_result err = EMULATE_DONE;
+-	int ret = 1;
+-	u32 cpu_exec_ctrl;
+-	bool intr_window_requested;
+-	unsigned count = 130;
+-
+-	/*
+-	 * We should never reach the point where we are emulating L2
+-	 * due to invalid guest state as that means we incorrectly
+-	 * allowed a nested VMEntry with an invalid vmcs12.
+-	 */
+-	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
+-
+-	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+-	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
+-
+-	while (vmx->emulation_required && count-- != 0) {
+-		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
+-			return handle_interrupt_window(&vmx->vcpu);
+-
+-		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
+-			return 1;
+-
+-		err = kvm_emulate_instruction(vcpu, 0);
+-
+-		if (err == EMULATE_USER_EXIT) {
+-			++vcpu->stat.mmio_exits;
+-			ret = 0;
+-			goto out;
+-		}
+-
+-		if (err != EMULATE_DONE)
+-			goto emulation_error;
+-
+-		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
+-		    vcpu->arch.exception.pending)
+-			goto emulation_error;
+-
+-		if (vcpu->arch.halt_request) {
+-			vcpu->arch.halt_request = 0;
+-			ret = kvm_vcpu_halt(vcpu);
+-			goto out;
+-		}
+-
+-		if (signal_pending(current))
+-			goto out;
+-		if (need_resched())
+-			schedule();
+-	}
+-
+-out:
+-	return ret;
+-
+-emulation_error:
+-	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+-	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+-	vcpu->run->internal.ndata = 0;
+-	return 0;
+-}
+-
+-static void grow_ple_window(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int old = vmx->ple_window;
+-
+-	vmx->ple_window = __grow_ple_window(old, ple_window,
+-					    ple_window_grow,
+-					    ple_window_max);
+-
+-	if (vmx->ple_window != old)
+-		vmx->ple_window_dirty = true;
+-
+-	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
+-}
+-
+-static void shrink_ple_window(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int old = vmx->ple_window;
+-
+-	vmx->ple_window = __shrink_ple_window(old, ple_window,
+-					      ple_window_shrink,
+-					      ple_window);
+-
+-	if (vmx->ple_window != old)
+-		vmx->ple_window_dirty = true;
+-
+-	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
+-}
+-
+-/*
+- * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
+- */
+-static void wakeup_handler(void)
+-{
+-	struct kvm_vcpu *vcpu;
+-	int cpu = smp_processor_id();
+-
+-	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+-	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
+-			blocked_vcpu_list) {
+-		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+-
+-		if (pi_test_on(pi_desc) == 1)
+-			kvm_vcpu_kick(vcpu);
+-	}
+-	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+-}
+-
+-static void vmx_enable_tdp(void)
+-{
+-	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
+-		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
+-		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
+-		0ull, VMX_EPT_EXECUTABLE_MASK,
+-		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
+-		VMX_EPT_RWX_MASK, 0ull);
+-
+-	ept_set_mmio_spte_mask();
+-	kvm_enable_tdp();
+-}
+-
+-static __init int hardware_setup(void)
+-{
+-	unsigned long host_bndcfgs;
+-	int r = -ENOMEM, i;
+-
+-	rdmsrl_safe(MSR_EFER, &host_efer);
+-
+-	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
+-		kvm_define_shared_msr(i, vmx_msr_index[i]);
+-
+-	for (i = 0; i < VMX_BITMAP_NR; i++) {
+-		vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
+-		if (!vmx_bitmap[i])
+-			goto out;
+-	}
+-
+-	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+-	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+-
+-	if (setup_vmcs_config(&vmcs_config) < 0) {
+-		r = -EIO;
+-		goto out;
+-	}
+-
+-	if (boot_cpu_has(X86_FEATURE_NX))
+-		kvm_enable_efer_bits(EFER_NX);
+-
+-	if (boot_cpu_has(X86_FEATURE_MPX)) {
+-		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
+-		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
+-	}
+-
+-	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
+-		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
+-		enable_vpid = 0;
+-
+-	if (!cpu_has_vmx_ept() ||
+-	    !cpu_has_vmx_ept_4levels() ||
+-	    !cpu_has_vmx_ept_mt_wb() ||
+-	    !cpu_has_vmx_invept_global())
+-		enable_ept = 0;
+-
+-	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
+-		enable_ept_ad_bits = 0;
+-
+-	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
+-		enable_unrestricted_guest = 0;
+-
+-	if (!cpu_has_vmx_flexpriority())
+-		flexpriority_enabled = 0;
+-
+-	if (!cpu_has_virtual_nmis())
+-		enable_vnmi = 0;
+-
+-	/*
+-	 * set_apic_access_page_addr() is used to reload apic access
+-	 * page upon invalidation.  No need to do anything if not
+-	 * using the APIC_ACCESS_ADDR VMCS field.
+-	 */
+-	if (!flexpriority_enabled)
+-		kvm_x86_ops->set_apic_access_page_addr = NULL;
+-
+-	if (!cpu_has_vmx_tpr_shadow())
+-		kvm_x86_ops->update_cr8_intercept = NULL;
+-
+-	if (enable_ept && !cpu_has_vmx_ept_2m_page())
+-		kvm_disable_largepages();
+-
+-#if IS_ENABLED(CONFIG_HYPERV)
+-	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
+-	    && enable_ept)
+-		kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
+-#endif
+-
+-	if (!cpu_has_vmx_ple()) {
+-		ple_gap = 0;
+-		ple_window = 0;
+-		ple_window_grow = 0;
+-		ple_window_max = 0;
+-		ple_window_shrink = 0;
+-	}
+-
+-	if (!cpu_has_vmx_apicv()) {
+-		enable_apicv = 0;
+-		kvm_x86_ops->sync_pir_to_irr = NULL;
+-	}
+-
+-	if (cpu_has_vmx_tsc_scaling()) {
+-		kvm_has_tsc_control = true;
+-		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
+-		kvm_tsc_scaling_ratio_frac_bits = 48;
+-	}
+-
+-	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
+-
+-	if (enable_ept)
+-		vmx_enable_tdp();
+-	else
+-		kvm_disable_tdp();
+-
+-	if (!nested) {
+-		kvm_x86_ops->get_nested_state = NULL;
+-		kvm_x86_ops->set_nested_state = NULL;
+-	}
+-
+-	/*
+-	 * Only enable PML when hardware supports PML feature, and both EPT
+-	 * and EPT A/D bit features are enabled -- PML depends on them to work.
+-	 */
+-	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+-		enable_pml = 0;
+-
+-	if (!enable_pml) {
+-		kvm_x86_ops->slot_enable_log_dirty = NULL;
+-		kvm_x86_ops->slot_disable_log_dirty = NULL;
+-		kvm_x86_ops->flush_log_dirty = NULL;
+-		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
+-	}
+-
+-	if (!cpu_has_vmx_preemption_timer())
+-		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
+-
+-	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
+-		u64 vmx_msr;
+-
+-		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+-		cpu_preemption_timer_multi =
+-			 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
+-	} else {
+-		kvm_x86_ops->set_hv_timer = NULL;
+-		kvm_x86_ops->cancel_hv_timer = NULL;
+-	}
+-
+-	if (!cpu_has_vmx_shadow_vmcs())
+-		enable_shadow_vmcs = 0;
+-	if (enable_shadow_vmcs)
+-		init_vmcs_shadow_fields();
+-
+-	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
+-	nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
+-
+-	kvm_mce_cap_supported |= MCG_LMCE_P;
+-
+-	r = alloc_kvm_area();
+-	if (r)
+-		goto out;
+-	return 0;
+-
+-out:
+-	for (i = 0; i < VMX_BITMAP_NR; i++)
+-		free_page((unsigned long)vmx_bitmap[i]);
+-
+-	return r;
+-}
+-
+-static __exit void hardware_unsetup(void)
+-{
+-	int i;
+-
+-	for (i = 0; i < VMX_BITMAP_NR; i++)
+-		free_page((unsigned long)vmx_bitmap[i]);
+-
+-	free_kvm_area();
+-}
+-
+-/*
+- * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+- * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+- */
+-static int handle_pause(struct kvm_vcpu *vcpu)
+-{
+-	if (!kvm_pause_in_guest(vcpu->kvm))
+-		grow_ple_window(vcpu);
+-
+-	/*
+-	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
+-	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
+-	 * never set PAUSE_EXITING and just set PLE if supported,
+-	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
+-	 */
+-	kvm_vcpu_on_spin(vcpu, true);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_nop(struct kvm_vcpu *vcpu)
+-{
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_mwait(struct kvm_vcpu *vcpu)
+-{
+-	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+-	return handle_nop(vcpu);
+-}
+-
+-static int handle_invalid_op(struct kvm_vcpu *vcpu)
+-{
+-	kvm_queue_exception(vcpu, UD_VECTOR);
+-	return 1;
+-}
+-
+-static int handle_monitor_trap(struct kvm_vcpu *vcpu)
+-{
+-	return 1;
+-}
+-
+-static int handle_monitor(struct kvm_vcpu *vcpu)
+-{
+-	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+-	return handle_nop(vcpu);
+-}
+-
+-/*
+- * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+- * set the success or error code of an emulated VMX instruction, as specified
+- * by Vol 2B, VMX Instruction Reference, "Conventions".
+- */
+-static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
+-{
+-	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+-			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+-			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+-}
+-
+-static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+-{
+-	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+-			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+-			    X86_EFLAGS_SF | X86_EFLAGS_OF))
+-			| X86_EFLAGS_CF);
+-}
+-
+-static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
+-					u32 vm_instruction_error)
+-{
+-	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
+-		/*
+-		 * failValid writes the error number to the current VMCS, which
+-		 * can't be done there isn't a current VMCS.
+-		 */
+-		nested_vmx_failInvalid(vcpu);
+-		return;
+-	}
+-	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+-			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+-			    X86_EFLAGS_SF | X86_EFLAGS_OF))
+-			| X86_EFLAGS_ZF);
+-	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+-	/*
+-	 * We don't need to force a shadow sync because
+-	 * VM_INSTRUCTION_ERROR is not shadowed
+-	 */
+-}
+-
+-static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+-{
+-	/* TODO: not to reset guest simply here. */
+-	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+-	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
+-}
+-
+-static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+-{
+-	struct vcpu_vmx *vmx =
+-		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+-
+-	vmx->nested.preemption_timer_expired = true;
+-	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+-	kvm_vcpu_kick(&vmx->vcpu);
+-
+-	return HRTIMER_NORESTART;
+-}
+-
+-/*
+- * Decode the memory-address operand of a vmx instruction, as recorded on an
+- * exit caused by such an instruction (run by a guest hypervisor).
+- * On success, returns 0. When the operand is invalid, returns 1 and throws
+- * #UD or #GP.
+- */
+-static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
+-				 unsigned long exit_qualification,
+-				 u32 vmx_instruction_info, bool wr, gva_t *ret)
+-{
+-	gva_t off;
+-	bool exn;
+-	struct kvm_segment s;
+-
+-	/*
+-	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
+-	 * Execution", on an exit, vmx_instruction_info holds most of the
+-	 * addressing components of the operand. Only the displacement part
+-	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+-	 * For how an actual address is calculated from all these components,
+-	 * refer to Vol. 1, "Operand Addressing".
+-	 */
+-	int  scaling = vmx_instruction_info & 3;
+-	int  addr_size = (vmx_instruction_info >> 7) & 7;
+-	bool is_reg = vmx_instruction_info & (1u << 10);
+-	int  seg_reg = (vmx_instruction_info >> 15) & 7;
+-	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
+-	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+-	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
+-	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
+-
+-	if (is_reg) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-
+-	/* Addr = segment_base + offset */
+-	/* offset = base + [index * scale] + displacement */
+-	off = exit_qualification; /* holds the displacement */
+-	if (addr_size == 1)
+-		off = (gva_t)sign_extend64(off, 31);
+-	else if (addr_size == 0)
+-		off = (gva_t)sign_extend64(off, 15);
+-	if (base_is_valid)
+-		off += kvm_register_read(vcpu, base_reg);
+-	if (index_is_valid)
+-		off += kvm_register_read(vcpu, index_reg)<<scaling;
+-	vmx_get_segment(vcpu, &s, seg_reg);
+-
+-	/*
+-	 * The effective address, i.e. @off, of a memory operand is truncated
+-	 * based on the address size of the instruction.  Note that this is
+-	 * the *effective address*, i.e. the address prior to accounting for
+-	 * the segment's base.
+-	 */
+-	if (addr_size == 1) /* 32 bit */
+-		off &= 0xffffffff;
+-	else if (addr_size == 0) /* 16 bit */
+-		off &= 0xffff;
+-
+-	/* Checks for #GP/#SS exceptions. */
+-	exn = false;
+-	if (is_long_mode(vcpu)) {
+-		/*
+-		 * The virtual/linear address is never truncated in 64-bit
+-		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
+-		 * address when using FS/GS with a non-zero base.
+-		 */
+-		*ret = s.base + off;
+-
+-		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
+-		 * non-canonical form. This is the only check on the memory
+-		 * destination for long mode!
+-		 */
+-		exn = is_noncanonical_address(*ret, vcpu);
+-	} else if (is_protmode(vcpu)) {
+-		/*
+-		 * When not in long mode, the virtual/linear address is
+-		 * unconditionally truncated to 32 bits regardless of the
+-		 * address size.
+-		 */
+-		*ret = (s.base + off) & 0xffffffff;
+-
+-		/* Protected mode: apply checks for segment validity in the
+-		 * following order:
+-		 * - segment type check (#GP(0) may be thrown)
+-		 * - usability check (#GP(0)/#SS(0))
+-		 * - limit check (#GP(0)/#SS(0))
+-		 */
+-		if (wr)
+-			/* #GP(0) if the destination operand is located in a
+-			 * read-only data segment or any code segment.
+-			 */
+-			exn = ((s.type & 0xa) == 0 || (s.type & 8));
+-		else
+-			/* #GP(0) if the source operand is located in an
+-			 * execute-only code segment
+-			 */
+-			exn = ((s.type & 0xa) == 8);
+-		if (exn) {
+-			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+-			return 1;
+-		}
+-		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
+-		 */
+-		exn = (s.unusable != 0);
+-
+-		/*
+-		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
+-		 * outside the segment limit.  All CPUs that support VMX ignore
+-		 * limit checks for flat segments, i.e. segments with base==0,
+-		 * limit==0xffffffff and of type expand-up data or code.
+-		 */
+-		if (!(s.base == 0 && s.limit == 0xffffffff &&
+-		     ((s.type & 8) || !(s.type & 4))))
+-			exn = exn || (off + sizeof(u64) > s.limit);
+-	}
+-	if (exn) {
+-		kvm_queue_exception_e(vcpu,
+-				      seg_reg == VCPU_SREG_SS ?
+-						SS_VECTOR : GP_VECTOR,
+-				      0);
+-		return 1;
+-	}
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
+-{
+-	gva_t gva;
+-	struct x86_exception e;
+-
+-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+-			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
+-		return 1;
+-
+-	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
+-		kvm_inject_page_fault(vcpu, &e);
+-		return 1;
+-	}
+-
+-	return 0;
+-}
+-
+-/*
+- * Allocate a shadow VMCS and associate it with the currently loaded
+- * VMCS, unless such a shadow VMCS already exists. The newly allocated
+- * VMCS is also VMCLEARed, so that it is ready for use.
+- */
+-static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
+-
+-	/*
+-	 * We should allocate a shadow vmcs for vmcs01 only when L1
+-	 * executes VMXON and free it when L1 executes VMXOFF.
+-	 * As it is invalid to execute VMXON twice, we shouldn't reach
+-	 * here when vmcs01 already have an allocated shadow vmcs.
+-	 */
+-	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
+-
+-	if (!loaded_vmcs->shadow_vmcs) {
+-		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
+-		if (loaded_vmcs->shadow_vmcs)
+-			vmcs_clear(loaded_vmcs->shadow_vmcs);
+-	}
+-	return loaded_vmcs->shadow_vmcs;
+-}
+-
+-static int enter_vmx_operation(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int r;
+-
+-	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
+-	if (r < 0)
+-		goto out_vmcs02;
+-
+-	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
+-	if (!vmx->nested.cached_vmcs12)
+-		goto out_cached_vmcs12;
+-
+-	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
+-	if (!vmx->nested.cached_shadow_vmcs12)
+-		goto out_cached_shadow_vmcs12;
+-
+-	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
+-		goto out_shadow_vmcs;
+-
+-	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+-		     HRTIMER_MODE_REL_PINNED);
+-	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+-
+-	vmx->nested.vpid02 = allocate_vpid();
+-
+-	vmx->nested.vmxon = true;
+-	return 0;
+-
+-out_shadow_vmcs:
+-	kfree(vmx->nested.cached_shadow_vmcs12);
+-
+-out_cached_shadow_vmcs12:
+-	kfree(vmx->nested.cached_vmcs12);
+-
+-out_cached_vmcs12:
+-	free_loaded_vmcs(&vmx->nested.vmcs02);
+-
+-out_vmcs02:
+-	return -ENOMEM;
+-}
+-
+-/*
+- * Emulate the VMXON instruction.
+- * Currently, we just remember that VMX is active, and do not save or even
+- * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+- * do not currently need to store anything in that guest-allocated memory
+- * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+- * argument is different from the VMXON pointer (which the spec says they do).
+- */
+-static int handle_vmon(struct kvm_vcpu *vcpu)
+-{
+-	int ret;
+-	gpa_t vmptr;
+-	struct page *page;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+-		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+-
+-	/*
+-	 * The Intel VMX Instruction Reference lists a bunch of bits that are
+-	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
+-	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
+-	 * Otherwise, we should fail with #UD.  But most faulting conditions
+-	 * have already been checked by hardware, prior to the VM-exit for
+-	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
+-	 * that bit set to 1 in non-root mode.
+-	 */
+-	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-
+-	/* CPL=0 must be checked manually. */
+-	if (vmx_get_cpl(vcpu)) {
+-		kvm_inject_gp(vcpu, 0);
+-		return 1;
+-	}
+-
+-	if (vmx->nested.vmxon) {
+-		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+-			!= VMXON_NEEDED_FEATURES) {
+-		kvm_inject_gp(vcpu, 0);
+-		return 1;
+-	}
+-
+-	if (nested_vmx_get_vmptr(vcpu, &vmptr))
+-		return 1;
+-
+-	/*
+-	 * SDM 3: 24.11.5
+-	 * The first 4 bytes of VMXON region contain the supported
+-	 * VMCS revision identifier
+-	 *
+-	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
+-	 * which replaces physical address width with 32
+-	 */
+-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
+-		nested_vmx_failInvalid(vcpu);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+-	if (is_error_page(page)) {
+-		nested_vmx_failInvalid(vcpu);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
+-		kunmap(page);
+-		kvm_release_page_clean(page);
+-		nested_vmx_failInvalid(vcpu);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-	kunmap(page);
+-	kvm_release_page_clean(page);
+-
+-	vmx->nested.vmxon_ptr = vmptr;
+-	ret = enter_vmx_operation(vcpu);
+-	if (ret)
+-		return ret;
+-
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-/*
+- * Intel's VMX Instruction Reference specifies a common set of prerequisites
+- * for running VMX instructions (except VMXON, whose prerequisites are
+- * slightly different). It also specifies what exception to inject otherwise.
+- * Note that many of these exceptions have priority over VM exits, so they
+- * don't have to be checked again here.
+- */
+-static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+-{
+-	if (!to_vmx(vcpu)->nested.vmxon) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 0;
+-	}
+-
+-	if (vmx_get_cpl(vcpu)) {
+-		kvm_inject_gp(vcpu, 0);
+-		return 0;
+-	}
+-
+-	return 1;
+-}
+-
+-static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
+-{
+-	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
+-	vmcs_write64(VMCS_LINK_POINTER, -1ull);
+-	vmx->nested.sync_shadow_vmcs = false;
+-}
+-
+-static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
+-{
+-	if (vmx->nested.current_vmptr == -1ull)
+-		return;
+-
+-	if (enable_shadow_vmcs) {
+-		/* copy to memory all shadowed fields in case
+-		   they were modified */
+-		copy_shadow_to_vmcs12(vmx);
+-		vmx_disable_shadow_vmcs(vmx);
+-	}
+-	vmx->nested.posted_intr_nv = -1;
+-
+-	/* Flush VMCS12 to guest memory */
+-	kvm_vcpu_write_guest_page(&vmx->vcpu,
+-				  vmx->nested.current_vmptr >> PAGE_SHIFT,
+-				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
+-
+-	vmx->nested.current_vmptr = -1ull;
+-}
+-
+-/*
+- * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+- * just stops using VMX.
+- */
+-static void free_nested(struct vcpu_vmx *vmx)
+-{
+-	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
+-		return;
+-
+-	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, &vmx->vcpu);
+-
+-	hrtimer_cancel(&vmx->nested.preemption_timer);
+-	vmx->nested.vmxon = false;
+-	vmx->nested.smm.vmxon = false;
+-	free_vpid(vmx->nested.vpid02);
+-	vmx->nested.posted_intr_nv = -1;
+-	vmx->nested.current_vmptr = -1ull;
+-	if (enable_shadow_vmcs) {
+-		vmx_disable_shadow_vmcs(vmx);
+-		vmcs_clear(vmx->vmcs01.shadow_vmcs);
+-		free_vmcs(vmx->vmcs01.shadow_vmcs);
+-		vmx->vmcs01.shadow_vmcs = NULL;
+-	}
+-	kfree(vmx->nested.cached_vmcs12);
+-	kfree(vmx->nested.cached_shadow_vmcs12);
+-	/* Unpin physical memory we referred to in the vmcs02 */
+-	if (vmx->nested.apic_access_page) {
+-		kvm_release_page_dirty(vmx->nested.apic_access_page);
+-		vmx->nested.apic_access_page = NULL;
+-	}
+-	if (vmx->nested.virtual_apic_page) {
+-		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+-		vmx->nested.virtual_apic_page = NULL;
+-	}
+-	if (vmx->nested.pi_desc_page) {
+-		kunmap(vmx->nested.pi_desc_page);
+-		kvm_release_page_dirty(vmx->nested.pi_desc_page);
+-		vmx->nested.pi_desc_page = NULL;
+-		vmx->nested.pi_desc = NULL;
+-	}
+-
+-	free_loaded_vmcs(&vmx->nested.vmcs02);
+-}
+-
+-/* Emulate the VMXOFF instruction */
+-static int handle_vmoff(struct kvm_vcpu *vcpu)
+-{
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-	free_nested(to_vmx(vcpu));
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-/* Emulate the VMCLEAR instruction */
+-static int handle_vmclear(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 zero = 0;
+-	gpa_t vmptr;
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	if (nested_vmx_get_vmptr(vcpu, &vmptr))
+-		return 1;
+-
+-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
+-		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	if (vmptr == vmx->nested.vmxon_ptr) {
+-		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	if (vmptr == vmx->nested.current_vmptr)
+-		nested_release_vmcs12(vmx);
+-
+-	kvm_vcpu_write_guest(vcpu,
+-			vmptr + offsetof(struct vmcs12, launch_state),
+-			&zero, sizeof(zero));
+-
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+-
+-/* Emulate the VMLAUNCH instruction */
+-static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+-{
+-	return nested_vmx_run(vcpu, true);
+-}
+-
+-/* Emulate the VMRESUME instruction */
+-static int handle_vmresume(struct kvm_vcpu *vcpu)
+-{
+-
+-	return nested_vmx_run(vcpu, false);
+-}
+-
+-/*
+- * Read a vmcs12 field. Since these can have varying lengths and we return
+- * one type, we chose the biggest type (u64) and zero-extend the return value
+- * to that size. Note that the caller, handle_vmread, might need to use only
+- * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
+- * 64-bit fields are to be returned).
+- */
+-static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
+-				  unsigned long field, u64 *ret)
+-{
+-	short offset = vmcs_field_to_offset(field);
+-	char *p;
+-
+-	if (offset < 0)
+-		return offset;
+-
+-	p = (char *)vmcs12 + offset;
+-
+-	switch (vmcs_field_width(field)) {
+-	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
+-		*ret = *((natural_width *)p);
+-		return 0;
+-	case VMCS_FIELD_WIDTH_U16:
+-		*ret = *((u16 *)p);
+-		return 0;
+-	case VMCS_FIELD_WIDTH_U32:
+-		*ret = *((u32 *)p);
+-		return 0;
+-	case VMCS_FIELD_WIDTH_U64:
+-		*ret = *((u64 *)p);
+-		return 0;
+-	default:
+-		WARN_ON(1);
+-		return -ENOENT;
+-	}
+-}
+-
+-
+-static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
+-				   unsigned long field, u64 field_value){
+-	short offset = vmcs_field_to_offset(field);
+-	char *p = (char *)vmcs12 + offset;
+-	if (offset < 0)
+-		return offset;
+-
+-	switch (vmcs_field_width(field)) {
+-	case VMCS_FIELD_WIDTH_U16:
+-		*(u16 *)p = field_value;
+-		return 0;
+-	case VMCS_FIELD_WIDTH_U32:
+-		*(u32 *)p = field_value;
+-		return 0;
+-	case VMCS_FIELD_WIDTH_U64:
+-		*(u64 *)p = field_value;
+-		return 0;
+-	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
+-		*(natural_width *)p = field_value;
+-		return 0;
+-	default:
+-		WARN_ON(1);
+-		return -ENOENT;
+-	}
+-
+-}
+-
+-/*
+- * Copy the writable VMCS shadow fields back to the VMCS12, in case
+- * they have been modified by the L1 guest. Note that the "read-only"
+- * VM-exit information fields are actually writable if the vCPU is
+- * configured to support "VMWRITE to any supported field in the VMCS."
+- */
+-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+-{
+-	const u16 *fields[] = {
+-		shadow_read_write_fields,
+-		shadow_read_only_fields
+-	};
+-	const int max_fields[] = {
+-		max_shadow_read_write_fields,
+-		max_shadow_read_only_fields
+-	};
+-	int i, q;
+-	unsigned long field;
+-	u64 field_value;
+-	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+-
+-	if (WARN_ON(!shadow_vmcs))
+-		return;
+-
+-	preempt_disable();
+-
+-	vmcs_load(shadow_vmcs);
+-
+-	for (q = 0; q < ARRAY_SIZE(fields); q++) {
+-		for (i = 0; i < max_fields[q]; i++) {
+-			field = fields[q][i];
+-			field_value = __vmcs_readl(field);
+-			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
+-		}
+-		/*
+-		 * Skip the VM-exit information fields if they are read-only.
+-		 */
+-		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+-			break;
+-	}
+-
+-	vmcs_clear(shadow_vmcs);
+-	vmcs_load(vmx->loaded_vmcs->vmcs);
+-
+-	preempt_enable();
+-}
+-
+-static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+-{
+-	const u16 *fields[] = {
+-		shadow_read_write_fields,
+-		shadow_read_only_fields
+-	};
+-	const int max_fields[] = {
+-		max_shadow_read_write_fields,
+-		max_shadow_read_only_fields
+-	};
+-	int i, q;
+-	unsigned long field;
+-	u64 field_value = 0;
+-	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+-
+-	if (WARN_ON(!shadow_vmcs))
+-		return;
+-
+-	vmcs_load(shadow_vmcs);
+-
+-	for (q = 0; q < ARRAY_SIZE(fields); q++) {
+-		for (i = 0; i < max_fields[q]; i++) {
+-			field = fields[q][i];
+-			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
+-			__vmcs_writel(field, field_value);
+-		}
+-	}
+-
+-	vmcs_clear(shadow_vmcs);
+-	vmcs_load(vmx->loaded_vmcs->vmcs);
+-}
+-
+-/*
+- * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
+- * used before) all generate the same failure when it is missing.
+- */
+-static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	if (vmx->nested.current_vmptr == -1ull) {
+-		nested_vmx_failInvalid(vcpu);
+-		return 0;
+-	}
+-	return 1;
+-}
+-
+-static int handle_vmread(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long field;
+-	u64 field_value;
+-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-	gva_t gva = 0;
+-	struct vmcs12 *vmcs12;
+-	struct x86_exception e;
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	if (!nested_vmx_check_vmcs12(vcpu))
+-		return kvm_skip_emulated_instruction(vcpu);
+-
+-	if (!is_guest_mode(vcpu))
+-		vmcs12 = get_vmcs12(vcpu);
+-	else {
+-		/*
+-		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
+-		 * to shadowed-field sets the ALU flags for VMfailInvalid.
+-		 */
+-		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
+-			nested_vmx_failInvalid(vcpu);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-		vmcs12 = get_shadow_vmcs12(vcpu);
+-	}
+-
+-	/* Decode instruction info and find the field to read */
+-	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+-	/* Read the field, zero-extended to a u64 field_value */
+-	if (vmcs12_read_any(vmcs12, field, &field_value) < 0) {
+-		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-	/*
+-	 * Now copy part of this value to register or memory, as requested.
+-	 * Note that the number of bits actually copied is 32 or 64 depending
+-	 * on the guest's mode (32 or 64 bit), not on the given field's length.
+-	 */
+-	if (vmx_instruction_info & (1u << 10)) {
+-		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+-			field_value);
+-	} else {
+-		if (get_vmx_mem_address(vcpu, exit_qualification,
+-				vmx_instruction_info, true, &gva))
+-			return 1;
+-		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
+-		if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
+-						(is_long_mode(vcpu) ? 8 : 4),
+-						&e)) {
+-			kvm_inject_page_fault(vcpu, &e);
+-			return 1;
+-		}
+-	}
+-
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-
+-static int handle_vmwrite(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long field;
+-	gva_t gva;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-
+-	/* The value to write might be 32 or 64 bits, depending on L1's long
+-	 * mode, and eventually we need to write that into a field of several
+-	 * possible lengths. The code below first zero-extends the value to 64
+-	 * bit (field_value), and then copies only the appropriate number of
+-	 * bits into the vmcs12 field.
+-	 */
+-	u64 field_value = 0;
+-	struct x86_exception e;
+-	struct vmcs12 *vmcs12;
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	if (!nested_vmx_check_vmcs12(vcpu))
+-		return kvm_skip_emulated_instruction(vcpu);
+-
+-	if (vmx_instruction_info & (1u << 10))
+-		field_value = kvm_register_readl(vcpu,
+-			(((vmx_instruction_info) >> 3) & 0xf));
+-	else {
+-		if (get_vmx_mem_address(vcpu, exit_qualification,
+-				vmx_instruction_info, false, &gva))
+-			return 1;
+-		if (kvm_read_guest_virt(vcpu, gva, &field_value,
+-					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+-			kvm_inject_page_fault(vcpu, &e);
+-			return 1;
+-		}
+-	}
+-
+-
+-	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+-	/*
+-	 * If the vCPU supports "VMWRITE to any supported field in the
+-	 * VMCS," then the "read-only" fields are actually read/write.
+-	 */
+-	if (vmcs_field_readonly(field) &&
+-	    !nested_cpu_has_vmwrite_any_field(vcpu)) {
+-		nested_vmx_failValid(vcpu,
+-			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	if (!is_guest_mode(vcpu))
+-		vmcs12 = get_vmcs12(vcpu);
+-	else {
+-		/*
+-		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
+-		 * to shadowed-field sets the ALU flags for VMfailInvalid.
+-		 */
+-		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
+-			nested_vmx_failInvalid(vcpu);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-		vmcs12 = get_shadow_vmcs12(vcpu);
+-
+-	}
+-
+-	if (vmcs12_write_any(vmcs12, field, field_value) < 0) {
+-		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	/*
+-	 * Do not track vmcs12 dirty-state if in guest-mode
+-	 * as we actually dirty shadow vmcs12 instead of vmcs12.
+-	 */
+-	if (!is_guest_mode(vcpu)) {
+-		switch (field) {
+-#define SHADOW_FIELD_RW(x) case x:
+-#include "vmx_shadow_fields.h"
+-			/*
+-			 * The fields that can be updated by L1 without a vmexit are
+-			 * always updated in the vmcs02, the others go down the slow
+-			 * path of prepare_vmcs02.
+-			 */
+-			break;
+-		default:
+-			vmx->nested.dirty_vmcs12 = true;
+-			break;
+-		}
+-	}
+-
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
+-{
+-	vmx->nested.current_vmptr = vmptr;
+-	if (enable_shadow_vmcs) {
+-		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+-			      SECONDARY_EXEC_SHADOW_VMCS);
+-		vmcs_write64(VMCS_LINK_POINTER,
+-			     __pa(vmx->vmcs01.shadow_vmcs));
+-		vmx->nested.sync_shadow_vmcs = true;
+-	}
+-	vmx->nested.dirty_vmcs12 = true;
+-}
+-
+-/* Emulate the VMPTRLD instruction */
+-static int handle_vmptrld(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	gpa_t vmptr;
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	if (nested_vmx_get_vmptr(vcpu, &vmptr))
+-		return 1;
+-
+-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
+-		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	if (vmptr == vmx->nested.vmxon_ptr) {
+-		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	if (vmx->nested.current_vmptr != vmptr) {
+-		struct vmcs12 *new_vmcs12;
+-		struct page *page;
+-		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+-		if (is_error_page(page)) {
+-			nested_vmx_failInvalid(vcpu);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-		new_vmcs12 = kmap(page);
+-		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+-		    (new_vmcs12->hdr.shadow_vmcs &&
+-		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
+-			kunmap(page);
+-			kvm_release_page_clean(page);
+-			nested_vmx_failValid(vcpu,
+-				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-
+-		nested_release_vmcs12(vmx);
+-		/*
+-		 * Load VMCS12 from guest memory since it is not already
+-		 * cached.
+-		 */
+-		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
+-		kunmap(page);
+-		kvm_release_page_clean(page);
+-
+-		set_current_vmptr(vmx, vmptr);
+-	}
+-
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-/* Emulate the VMPTRST instruction */
+-static int handle_vmptrst(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
+-	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
+-	struct x86_exception e;
+-	gva_t gva;
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
+-		return 1;
+-	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
+-	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
+-					sizeof(gpa_t), &e)) {
+-		kvm_inject_page_fault(vcpu, &e);
+-		return 1;
+-	}
+-	nested_vmx_succeed(vcpu);
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-/* Emulate the INVEPT instruction */
+-static int handle_invept(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 vmx_instruction_info, types;
+-	unsigned long type;
+-	gva_t gva;
+-	struct x86_exception e;
+-	struct {
+-		u64 eptp, gpa;
+-	} operand;
+-
+-	if (!(vmx->nested.msrs.secondary_ctls_high &
+-	      SECONDARY_EXEC_ENABLE_EPT) ||
+-	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+-
+-	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+-
+-	if (type >= 32 || !(types & (1 << type))) {
+-		nested_vmx_failValid(vcpu,
+-				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	/* According to the Intel VMX instruction reference, the memory
+-	 * operand is read even if it isn't needed (e.g., for type==global)
+-	 */
+-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+-			vmx_instruction_info, false, &gva))
+-		return 1;
+-	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+-		kvm_inject_page_fault(vcpu, &e);
+-		return 1;
+-	}
+-
+-	switch (type) {
+-	case VMX_EPT_EXTENT_GLOBAL:
+-	/*
+-	 * TODO: track mappings and invalidate
+-	 * single context requests appropriately
+-	 */
+-	case VMX_EPT_EXTENT_CONTEXT:
+-		kvm_mmu_sync_roots(vcpu);
+-		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+-		nested_vmx_succeed(vcpu);
+-		break;
+-	default:
+-		BUG_ON(1);
+-		break;
+-	}
+-
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_invvpid(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 vmx_instruction_info;
+-	unsigned long type, types;
+-	gva_t gva;
+-	struct x86_exception e;
+-	struct {
+-		u64 vpid;
+-		u64 gla;
+-	} operand;
+-
+-	if (!(vmx->nested.msrs.secondary_ctls_high &
+-	      SECONDARY_EXEC_ENABLE_VPID) ||
+-			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+-
+-	types = (vmx->nested.msrs.vpid_caps &
+-			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
+-
+-	if (type >= 32 || !(types & (1 << type))) {
+-		nested_vmx_failValid(vcpu,
+-			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	/* according to the intel vmx instruction reference, the memory
+-	 * operand is read even if it isn't needed (e.g., for type==global)
+-	 */
+-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+-			vmx_instruction_info, false, &gva))
+-		return 1;
+-	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+-		kvm_inject_page_fault(vcpu, &e);
+-		return 1;
+-	}
+-	if (operand.vpid >> 16) {
+-		nested_vmx_failValid(vcpu,
+-			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	switch (type) {
+-	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
+-		if (!operand.vpid ||
+-		    is_noncanonical_address(operand.gla, vcpu)) {
+-			nested_vmx_failValid(vcpu,
+-				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-		if (cpu_has_vmx_invvpid_individual_addr() &&
+-		    vmx->nested.vpid02) {
+-			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
+-				vmx->nested.vpid02, operand.gla);
+-		} else
+-			__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+-		break;
+-	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
+-	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
+-		if (!operand.vpid) {
+-			nested_vmx_failValid(vcpu,
+-				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+-			return kvm_skip_emulated_instruction(vcpu);
+-		}
+-		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+-		break;
+-	case VMX_VPID_EXTENT_ALL_CONTEXT:
+-		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+-		break;
+-	default:
+-		WARN_ON_ONCE(1);
+-		return kvm_skip_emulated_instruction(vcpu);
+-	}
+-
+-	nested_vmx_succeed(vcpu);
+-
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-static int handle_invpcid(struct kvm_vcpu *vcpu)
+-{
+-	u32 vmx_instruction_info;
+-	unsigned long type;
+-	bool pcid_enabled;
+-	gva_t gva;
+-	struct x86_exception e;
+-	unsigned i;
+-	unsigned long roots_to_free = 0;
+-	struct {
+-		u64 pcid;
+-		u64 gla;
+-	} operand;
+-
+-	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-
+-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+-
+-	if (type > 3) {
+-		kvm_inject_gp(vcpu, 0);
+-		return 1;
+-	}
+-
+-	/* According to the Intel instruction reference, the memory operand
+-	 * is read even if it isn't needed (e.g., for type==all)
+-	 */
+-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+-				vmx_instruction_info, false, &gva))
+-		return 1;
+-
+-	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+-		kvm_inject_page_fault(vcpu, &e);
+-		return 1;
+-	}
+-
+-	if (operand.pcid >> 12 != 0) {
+-		kvm_inject_gp(vcpu, 0);
+-		return 1;
+-	}
+-
+-	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
+-
+-	switch (type) {
+-	case INVPCID_TYPE_INDIV_ADDR:
+-		if ((!pcid_enabled && (operand.pcid != 0)) ||
+-		    is_noncanonical_address(operand.gla, vcpu)) {
+-			kvm_inject_gp(vcpu, 0);
+-			return 1;
+-		}
+-		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
+-		return kvm_skip_emulated_instruction(vcpu);
+-
+-	case INVPCID_TYPE_SINGLE_CTXT:
+-		if (!pcid_enabled && (operand.pcid != 0)) {
+-			kvm_inject_gp(vcpu, 0);
+-			return 1;
+-		}
+-
+-		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
+-			kvm_mmu_sync_roots(vcpu);
+-			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+-		}
+-
+-		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+-			if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3)
+-			    == operand.pcid)
+-				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+-
+-		kvm_mmu_free_roots(vcpu, roots_to_free);
+-		/*
+-		 * If neither the current cr3 nor any of the prev_roots use the
+-		 * given PCID, then nothing needs to be done here because a
+-		 * resync will happen anyway before switching to any other CR3.
+-		 */
+-
+-		return kvm_skip_emulated_instruction(vcpu);
+-
+-	case INVPCID_TYPE_ALL_NON_GLOBAL:
+-		/*
+-		 * Currently, KVM doesn't mark global entries in the shadow
+-		 * page tables, so a non-global flush just degenerates to a
+-		 * global flush. If needed, we could optimize this later by
+-		 * keeping track of global entries in shadow page tables.
+-		 */
+-
+-		/* fall-through */
+-	case INVPCID_TYPE_ALL_INCL_GLOBAL:
+-		kvm_mmu_unload(vcpu);
+-		return kvm_skip_emulated_instruction(vcpu);
+-
+-	default:
+-		BUG(); /* We have already checked above that type <= 3 */
+-	}
+-}
+-
+-static int handle_pml_full(struct kvm_vcpu *vcpu)
+-{
+-	unsigned long exit_qualification;
+-
+-	trace_kvm_pml_full(vcpu->vcpu_id);
+-
+-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-
+-	/*
+-	 * PML buffer FULL happened while executing iret from NMI,
+-	 * "blocked by NMI" bit has to be set before next VM entry.
+-	 */
+-	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+-			enable_vnmi &&
+-			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
+-		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+-				GUEST_INTR_STATE_NMI);
+-
+-	/*
+-	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+-	 * here.., and there's no userspace involvement needed for PML.
+-	 */
+-	return 1;
+-}
+-
+-static int handle_preemption_timer(struct kvm_vcpu *vcpu)
+-{
+-	if (!to_vmx(vcpu)->req_immediate_exit)
+-		kvm_lapic_expired_hv_timer(vcpu);
+-	return 1;
+-}
+-
+-static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int maxphyaddr = cpuid_maxphyaddr(vcpu);
+-
+-	/* Check for memory type validity */
+-	switch (address & VMX_EPTP_MT_MASK) {
+-	case VMX_EPTP_MT_UC:
+-		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
+-			return false;
+-		break;
+-	case VMX_EPTP_MT_WB:
+-		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
+-			return false;
+-		break;
+-	default:
+-		return false;
+-	}
+-
+-	/* only 4 levels page-walk length are valid */
+-	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
+-		return false;
+-
+-	/* Reserved bits should not be set */
+-	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
+-		return false;
+-
+-	/* AD, if set, should be supported */
+-	if (address & VMX_EPTP_AD_ENABLE_BIT) {
+-		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
+-			return false;
+-	}
+-
+-	return true;
+-}
+-
+-static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
+-				     struct vmcs12 *vmcs12)
+-{
+-	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
+-	u64 address;
+-	bool accessed_dirty;
+-	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+-
+-	if (!nested_cpu_has_eptp_switching(vmcs12) ||
+-	    !nested_cpu_has_ept(vmcs12))
+-		return 1;
+-
+-	if (index >= VMFUNC_EPTP_ENTRIES)
+-		return 1;
+-
+-
+-	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
+-				     &address, index * 8, 8))
+-		return 1;
+-
+-	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
+-
+-	/*
+-	 * If the (L2) guest does a vmfunc to the currently
+-	 * active ept pointer, we don't have to do anything else
+-	 */
+-	if (vmcs12->ept_pointer != address) {
+-		if (!valid_ept_address(vcpu, address))
+-			return 1;
+-
+-		kvm_mmu_unload(vcpu);
+-		mmu->ept_ad = accessed_dirty;
+-		mmu->base_role.ad_disabled = !accessed_dirty;
+-		vmcs12->ept_pointer = address;
+-		/*
+-		 * TODO: Check what's the correct approach in case
+-		 * mmu reload fails. Currently, we just let the next
+-		 * reload potentially fail
+-		 */
+-		kvm_mmu_reload(vcpu);
+-	}
+-
+-	return 0;
+-}
+-
+-static int handle_vmfunc(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmcs12 *vmcs12;
+-	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
+-
+-	/*
+-	 * VMFUNC is only supported for nested guests, but we always enable the
+-	 * secondary control for simplicity; for non-nested mode, fake that we
+-	 * didn't by injecting #UD.
+-	 */
+-	if (!is_guest_mode(vcpu)) {
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-
+-	vmcs12 = get_vmcs12(vcpu);
+-	if ((vmcs12->vm_function_control & (1 << function)) == 0)
+-		goto fail;
+-
+-	switch (function) {
+-	case 0:
+-		if (nested_vmx_eptp_switching(vcpu, vmcs12))
+-			goto fail;
+-		break;
+-	default:
+-		goto fail;
+-	}
+-	return kvm_skip_emulated_instruction(vcpu);
+-
+-fail:
+-	nested_vmx_vmexit(vcpu, vmx->exit_reason,
+-			  vmcs_read32(VM_EXIT_INTR_INFO),
+-			  vmcs_readl(EXIT_QUALIFICATION));
+-	return 1;
+-}
+-
+-static int handle_encls(struct kvm_vcpu *vcpu)
+-{
+-	/*
+-	 * SGX virtualization is not yet supported.  There is no software
+-	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
+-	 * to prevent the guest from executing ENCLS.
+-	 */
+-	kvm_queue_exception(vcpu, UD_VECTOR);
+-	return 1;
+-}
+-
+-/*
+- * The exit handlers return 1 if the exit was handled fully and guest execution
+- * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
+- * to be done to userspace and return 0.
+- */
+-static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+-	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
+-	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
+-	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
+-	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
+-	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
+-	[EXIT_REASON_CR_ACCESS]               = handle_cr,
+-	[EXIT_REASON_DR_ACCESS]               = handle_dr,
+-	[EXIT_REASON_CPUID]                   = handle_cpuid,
+-	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
+-	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
+-	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
+-	[EXIT_REASON_HLT]                     = handle_halt,
+-	[EXIT_REASON_INVD]		      = handle_invd,
+-	[EXIT_REASON_INVLPG]		      = handle_invlpg,
+-	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
+-	[EXIT_REASON_VMCALL]                  = handle_vmcall,
+-	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
+-	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
+-	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
+-	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
+-	[EXIT_REASON_VMREAD]                  = handle_vmread,
+-	[EXIT_REASON_VMRESUME]                = handle_vmresume,
+-	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
+-	[EXIT_REASON_VMOFF]                   = handle_vmoff,
+-	[EXIT_REASON_VMON]                    = handle_vmon,
+-	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
+-	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
+-	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
+-	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
+-	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
+-	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
+-	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
+-	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
+-	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
+-	[EXIT_REASON_LDTR_TR]		      = handle_desc,
+-	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
+-	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
+-	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
+-	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
+-	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
+-	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
+-	[EXIT_REASON_INVEPT]                  = handle_invept,
+-	[EXIT_REASON_INVVPID]                 = handle_invvpid,
+-	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
+-	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
+-	[EXIT_REASON_XSAVES]                  = handle_xsaves,
+-	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
+-	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
+-	[EXIT_REASON_INVPCID]                 = handle_invpcid,
+-	[EXIT_REASON_VMFUNC]                  = handle_vmfunc,
+-	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
+-	[EXIT_REASON_ENCLS]		      = handle_encls,
+-};
+-
+-static const int kvm_vmx_max_exit_handlers =
+-	ARRAY_SIZE(kvm_vmx_exit_handlers);
+-
+-/*
+- * Return true if an IO instruction with the specified port and size should cause
+- * a VM-exit into L1.
+- */
+-bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
+-				 int size)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	gpa_t bitmap, last_bitmap;
+-	u8 b;
+-
+-	last_bitmap = (gpa_t)-1;
+-	b = -1;
+-
+-	while (size > 0) {
+-		if (port < 0x8000)
+-			bitmap = vmcs12->io_bitmap_a;
+-		else if (port < 0x10000)
+-			bitmap = vmcs12->io_bitmap_b;
+-		else
+-			return true;
+-		bitmap += (port & 0x7fff) / 8;
+-
+-		if (last_bitmap != bitmap)
+-			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
+-				return true;
+-		if (b & (1 << (port & 7)))
+-			return true;
+-
+-		port++;
+-		size--;
+-		last_bitmap = bitmap;
+-	}
+-
+-	return false;
+-}
+-
+-/*
+- * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+- * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+- * disinterest in the current event (read or write a specific MSR) by using an
+- * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+- */
+-static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+-	struct vmcs12 *vmcs12, u32 exit_reason)
+-{
+-	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+-	gpa_t bitmap;
+-
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+-		return true;
+-
+-	/*
+-	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+-	 * for the four combinations of read/write and low/high MSR numbers.
+-	 * First we need to figure out which of the four to use:
+-	 */
+-	bitmap = vmcs12->msr_bitmap;
+-	if (exit_reason == EXIT_REASON_MSR_WRITE)
+-		bitmap += 2048;
+-	if (msr_index >= 0xc0000000) {
+-		msr_index -= 0xc0000000;
+-		bitmap += 1024;
+-	}
+-
+-	/* Then read the msr_index'th bit from this bitmap: */
+-	if (msr_index < 1024*8) {
+-		unsigned char b;
+-		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
+-			return true;
+-		return 1 & (b >> (msr_index & 7));
+-	} else
+-		return true; /* let L1 handle the wrong parameter */
+-}
+-
+-/*
+- * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+- * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+- * intercept (via guest_host_mask etc.) the current event.
+- */
+-static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+-	struct vmcs12 *vmcs12)
+-{
+-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+-	int cr = exit_qualification & 15;
+-	int reg;
+-	unsigned long val;
+-
+-	switch ((exit_qualification >> 4) & 3) {
+-	case 0: /* mov to cr */
+-		reg = (exit_qualification >> 8) & 15;
+-		val = kvm_register_readl(vcpu, reg);
+-		switch (cr) {
+-		case 0:
+-			if (vmcs12->cr0_guest_host_mask &
+-			    (val ^ vmcs12->cr0_read_shadow))
+-				return true;
+-			break;
+-		case 3:
+-			if ((vmcs12->cr3_target_count >= 1 &&
+-					vmcs12->cr3_target_value0 == val) ||
+-				(vmcs12->cr3_target_count >= 2 &&
+-					vmcs12->cr3_target_value1 == val) ||
+-				(vmcs12->cr3_target_count >= 3 &&
+-					vmcs12->cr3_target_value2 == val) ||
+-				(vmcs12->cr3_target_count >= 4 &&
+-					vmcs12->cr3_target_value3 == val))
+-				return false;
+-			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+-				return true;
+-			break;
+-		case 4:
+-			if (vmcs12->cr4_guest_host_mask &
+-			    (vmcs12->cr4_read_shadow ^ val))
+-				return true;
+-			break;
+-		case 8:
+-			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+-				return true;
+-			break;
+-		}
+-		break;
+-	case 2: /* clts */
+-		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+-		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
+-			return true;
+-		break;
+-	case 1: /* mov from cr */
+-		switch (cr) {
+-		case 3:
+-			if (vmcs12->cpu_based_vm_exec_control &
+-			    CPU_BASED_CR3_STORE_EXITING)
+-				return true;
+-			break;
+-		case 8:
+-			if (vmcs12->cpu_based_vm_exec_control &
+-			    CPU_BASED_CR8_STORE_EXITING)
+-				return true;
+-			break;
+-		}
+-		break;
+-	case 3: /* lmsw */
+-		/*
+-		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+-		 * cr0. Other attempted changes are ignored, with no exit.
+-		 */
+-		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+-		if (vmcs12->cr0_guest_host_mask & 0xe &
+-		    (val ^ vmcs12->cr0_read_shadow))
+-			return true;
+-		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+-		    !(vmcs12->cr0_read_shadow & 0x1) &&
+-		    (val & 0x1))
+-			return true;
+-		break;
+-	}
+-	return false;
+-}
+-
+-static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
+-	struct vmcs12 *vmcs12, gpa_t bitmap)
+-{
+-	u32 vmx_instruction_info;
+-	unsigned long field;
+-	u8 b;
+-
+-	if (!nested_cpu_has_shadow_vmcs(vmcs12))
+-		return true;
+-
+-	/* Decode instruction info and find the field to access */
+-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+-
+-	/* Out-of-range fields always cause a VM exit from L2 to L1 */
+-	if (field >> 15)
+-		return true;
+-
+-	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
+-		return true;
+-
+-	return 1 & (b >> (field & 7));
+-}
+-
+-/*
+- * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+- * should handle it ourselves in L0 (and then continue L2). Only call this
+- * when in is_guest_mode (L2).
+- */
+-static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
+-{
+-	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-
+-	if (vmx->nested.nested_run_pending)
+-		return false;
+-
+-	if (unlikely(vmx->fail)) {
+-		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+-				    vmcs_read32(VM_INSTRUCTION_ERROR));
+-		return true;
+-	}
+-
+-	/*
+-	 * The host physical addresses of some pages of guest memory
+-	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
+-	 * Page). The CPU may write to these pages via their host
+-	 * physical address while L2 is running, bypassing any
+-	 * address-translation-based dirty tracking (e.g. EPT write
+-	 * protection).
+-	 *
+-	 * Mark them dirty on every exit from L2 to prevent them from
+-	 * getting out of sync with dirty tracking.
+-	 */
+-	nested_mark_vmcs12_pages_dirty(vcpu);
+-
+-	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+-				vmcs_readl(EXIT_QUALIFICATION),
+-				vmx->idt_vectoring_info,
+-				intr_info,
+-				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+-				KVM_ISA_VMX);
+-
+-	switch ((u16)exit_reason) {
+-	case EXIT_REASON_EXCEPTION_NMI:
+-		if (is_nmi(intr_info))
+-			return false;
+-		else if (is_page_fault(intr_info))
+-			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
+-		else if (is_no_device(intr_info) &&
+-			 !(vmcs12->guest_cr0 & X86_CR0_TS))
+-			return false;
+-		else if (is_debug(intr_info) &&
+-			 vcpu->guest_debug &
+-			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+-			return false;
+-		else if (is_breakpoint(intr_info) &&
+-			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+-			return false;
+-		return vmcs12->exception_bitmap &
+-				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
+-	case EXIT_REASON_EXTERNAL_INTERRUPT:
+-		return false;
+-	case EXIT_REASON_TRIPLE_FAULT:
+-		return true;
+-	case EXIT_REASON_PENDING_INTERRUPT:
+-		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+-	case EXIT_REASON_NMI_WINDOW:
+-		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+-	case EXIT_REASON_TASK_SWITCH:
+-		return true;
+-	case EXIT_REASON_CPUID:
+-		return true;
+-	case EXIT_REASON_HLT:
+-		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+-	case EXIT_REASON_INVD:
+-		return true;
+-	case EXIT_REASON_INVLPG:
+-		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+-	case EXIT_REASON_RDPMC:
+-		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+-	case EXIT_REASON_RDRAND:
+-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
+-	case EXIT_REASON_RDSEED:
+-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
+-	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+-		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+-	case EXIT_REASON_VMREAD:
+-		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+-			vmcs12->vmread_bitmap);
+-	case EXIT_REASON_VMWRITE:
+-		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+-			vmcs12->vmwrite_bitmap);
+-	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+-	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+-	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
+-	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+-	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+-		/*
+-		 * VMX instructions trap unconditionally. This allows L1 to
+-		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
+-		 */
+-		return true;
+-	case EXIT_REASON_CR_ACCESS:
+-		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+-	case EXIT_REASON_DR_ACCESS:
+-		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+-	case EXIT_REASON_IO_INSTRUCTION:
+-		return nested_vmx_exit_handled_io(vcpu, vmcs12);
+-	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
+-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
+-	case EXIT_REASON_MSR_READ:
+-	case EXIT_REASON_MSR_WRITE:
+-		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+-	case EXIT_REASON_INVALID_STATE:
+-		return true;
+-	case EXIT_REASON_MWAIT_INSTRUCTION:
+-		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+-	case EXIT_REASON_MONITOR_TRAP_FLAG:
+-		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
+-	case EXIT_REASON_MONITOR_INSTRUCTION:
+-		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+-	case EXIT_REASON_PAUSE_INSTRUCTION:
+-		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+-			nested_cpu_has2(vmcs12,
+-				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+-	case EXIT_REASON_MCE_DURING_VMENTRY:
+-		return false;
+-	case EXIT_REASON_TPR_BELOW_THRESHOLD:
+-		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+-	case EXIT_REASON_APIC_ACCESS:
+-	case EXIT_REASON_APIC_WRITE:
+-	case EXIT_REASON_EOI_INDUCED:
+-		/*
+-		 * The controls for "virtualize APIC accesses," "APIC-
+-		 * register virtualization," and "virtual-interrupt
+-		 * delivery" only come from vmcs12.
+-		 */
+-		return true;
+-	case EXIT_REASON_EPT_VIOLATION:
+-		/*
+-		 * L0 always deals with the EPT violation. If nested EPT is
+-		 * used, and the nested mmu code discovers that the address is
+-		 * missing in the guest EPT table (EPT12), the EPT violation
+-		 * will be injected with nested_ept_inject_page_fault()
+-		 */
+-		return false;
+-	case EXIT_REASON_EPT_MISCONFIG:
+-		/*
+-		 * L2 never uses directly L1's EPT, but rather L0's own EPT
+-		 * table (shadow on EPT) or a merged EPT table that L0 built
+-		 * (EPT on EPT). So any problems with the structure of the
+-		 * table is L0's fault.
+-		 */
+-		return false;
+-	case EXIT_REASON_INVPCID:
+-		return
+-			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
+-			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+-	case EXIT_REASON_WBINVD:
+-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+-	case EXIT_REASON_XSETBV:
+-		return true;
+-	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+-		/*
+-		 * This should never happen, since it is not possible to
+-		 * set XSS to a non-zero value---neither in L1 nor in L2.
+-		 * If if it were, XSS would have to be checked against
+-		 * the XSS exit bitmap in vmcs12.
+-		 */
+-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+-	case EXIT_REASON_PREEMPTION_TIMER:
+-		return false;
+-	case EXIT_REASON_PML_FULL:
+-		/* We emulate PML support to L1. */
+-		return false;
+-	case EXIT_REASON_VMFUNC:
+-		/* VM functions are emulated through L2->L0 vmexits. */
+-		return false;
+-	case EXIT_REASON_ENCLS:
+-		/* SGX is never exposed to L1 */
+-		return false;
+-	default:
+-		return true;
+-	}
+-}
+-
+-static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
+-{
+-	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+-
+-	/*
+-	 * At this point, the exit interruption info in exit_intr_info
+-	 * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
+-	 * we need to query the in-kernel LAPIC.
+-	 */
+-	WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
+-	if ((exit_intr_info &
+-	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
+-	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
+-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-		vmcs12->vm_exit_intr_error_code =
+-			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+-	}
+-
+-	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
+-			  vmcs_readl(EXIT_QUALIFICATION));
+-	return 1;
+-}
+-
+-static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+-{
+-	*info1 = vmcs_readl(EXIT_QUALIFICATION);
+-	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
+-}
+-
+-static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
+-{
+-	if (vmx->pml_pg) {
+-		__free_page(vmx->pml_pg);
+-		vmx->pml_pg = NULL;
+-	}
+-}
+-
+-static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u64 *pml_buf;
+-	u16 pml_idx;
+-
+-	pml_idx = vmcs_read16(GUEST_PML_INDEX);
+-
+-	/* Do nothing if PML buffer is empty */
+-	if (pml_idx == (PML_ENTITY_NUM - 1))
+-		return;
+-
+-	/* PML index always points to next available PML buffer entity */
+-	if (pml_idx >= PML_ENTITY_NUM)
+-		pml_idx = 0;
+-	else
+-		pml_idx++;
+-
+-	pml_buf = page_address(vmx->pml_pg);
+-	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+-		u64 gpa;
+-
+-		gpa = pml_buf[pml_idx];
+-		WARN_ON(gpa & (PAGE_SIZE - 1));
+-		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
+-	}
+-
+-	/* reset PML index */
+-	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+-}
+-
+-/*
+- * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+- * Called before reporting dirty_bitmap to userspace.
+- */
+-static void kvm_flush_pml_buffers(struct kvm *kvm)
+-{
+-	int i;
+-	struct kvm_vcpu *vcpu;
+-	/*
+-	 * We only need to kick vcpu out of guest mode here, as PML buffer
+-	 * is flushed at beginning of all VMEXITs, and it's obvious that only
+-	 * vcpus running in guest are possible to have unflushed GPAs in PML
+-	 * buffer.
+-	 */
+-	kvm_for_each_vcpu(i, vcpu, kvm)
+-		kvm_vcpu_kick(vcpu);
+-}
+-
+-static void vmx_dump_sel(char *name, uint32_t sel)
+-{
+-	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
+-	       name, vmcs_read16(sel),
+-	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
+-	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
+-	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
+-}
+-
+-static void vmx_dump_dtsel(char *name, uint32_t limit)
+-{
+-	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
+-	       name, vmcs_read32(limit),
+-	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
+-}
+-
+-static void dump_vmcs(void)
+-{
+-	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
+-	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
+-	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+-	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
+-	u32 secondary_exec_control = 0;
+-	unsigned long cr4 = vmcs_readl(GUEST_CR4);
+-	u64 efer = vmcs_read64(GUEST_IA32_EFER);
+-	int i, n;
+-
+-	if (cpu_has_secondary_exec_ctrls())
+-		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+-
+-	pr_err("*** Guest State ***\n");
+-	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+-	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
+-	       vmcs_readl(CR0_GUEST_HOST_MASK));
+-	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+-	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
+-	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
+-	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
+-	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
+-	{
+-		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
+-		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
+-		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
+-		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
+-	}
+-	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
+-	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
+-	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
+-	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
+-	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+-	       vmcs_readl(GUEST_SYSENTER_ESP),
+-	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
+-	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
+-	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
+-	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
+-	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
+-	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
+-	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
+-	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
+-	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
+-	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
+-	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
+-	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
+-	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
+-		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
+-		       efer, vmcs_read64(GUEST_IA32_PAT));
+-	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
+-	       vmcs_read64(GUEST_IA32_DEBUGCTL),
+-	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
+-	if (cpu_has_load_perf_global_ctrl &&
+-	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+-		pr_err("PerfGlobCtl = 0x%016llx\n",
+-		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
+-	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
+-		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
+-	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
+-	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
+-	       vmcs_read32(GUEST_ACTIVITY_STATE));
+-	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+-		pr_err("InterruptStatus = %04x\n",
+-		       vmcs_read16(GUEST_INTR_STATUS));
+-
+-	pr_err("*** Host State ***\n");
+-	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
+-	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
+-	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
+-	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
+-	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
+-	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
+-	       vmcs_read16(HOST_TR_SELECTOR));
+-	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
+-	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
+-	       vmcs_readl(HOST_TR_BASE));
+-	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
+-	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
+-	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
+-	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
+-	       vmcs_readl(HOST_CR4));
+-	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+-	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
+-	       vmcs_read32(HOST_IA32_SYSENTER_CS),
+-	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
+-	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
+-		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
+-		       vmcs_read64(HOST_IA32_EFER),
+-		       vmcs_read64(HOST_IA32_PAT));
+-	if (cpu_has_load_perf_global_ctrl &&
+-	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+-		pr_err("PerfGlobCtl = 0x%016llx\n",
+-		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
+-
+-	pr_err("*** Control State ***\n");
+-	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
+-	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
+-	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
+-	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
+-	       vmcs_read32(EXCEPTION_BITMAP),
+-	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
+-	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
+-	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
+-	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+-	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
+-	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
+-	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
+-	       vmcs_read32(VM_EXIT_INTR_INFO),
+-	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+-	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
+-	pr_err("        reason=%08x qualification=%016lx\n",
+-	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
+-	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
+-	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
+-	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
+-	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
+-	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
+-		pr_err("TSC Multiplier = 0x%016llx\n",
+-		       vmcs_read64(TSC_MULTIPLIER));
+-	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
+-		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
+-	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
+-		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
+-	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
+-		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
+-	n = vmcs_read32(CR3_TARGET_COUNT);
+-	for (i = 0; i + 1 < n; i += 4)
+-		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
+-		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
+-		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
+-	if (i < n)
+-		pr_err("CR3 target%u=%016lx\n",
+-		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
+-	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+-		pr_err("PLE Gap=%08x Window=%08x\n",
+-		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
+-	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
+-		pr_err("Virtual processor ID = 0x%04x\n",
+-		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
+-}
+-
+-/*
+- * The guest has exited.  See if we can fix it or if we need userspace
+- * assistance.
+- */
+-static int vmx_handle_exit(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 exit_reason = vmx->exit_reason;
+-	u32 vectoring_info = vmx->idt_vectoring_info;
+-
+-	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
+-
+-	/*
+-	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+-	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+-	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
+-	 * mode as if vcpus is in root mode, the PML buffer must has been
+-	 * flushed already.
+-	 */
+-	if (enable_pml)
+-		vmx_flush_pml_buffer(vcpu);
+-
+-	/* If guest state is invalid, start emulating */
+-	if (vmx->emulation_required)
+-		return handle_invalid_guest_state(vcpu);
+-
+-	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
+-		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
+-
+-	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
+-		dump_vmcs();
+-		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+-		vcpu->run->fail_entry.hardware_entry_failure_reason
+-			= exit_reason;
+-		return 0;
+-	}
+-
+-	if (unlikely(vmx->fail)) {
+-		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+-		vcpu->run->fail_entry.hardware_entry_failure_reason
+-			= vmcs_read32(VM_INSTRUCTION_ERROR);
+-		return 0;
+-	}
+-
+-	/*
+-	 * Note:
+-	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+-	 * delivery event since it indicates guest is accessing MMIO.
+-	 * The vm-exit can be triggered again after return to guest that
+-	 * will cause infinite loop.
+-	 */
+-	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+-			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
+-			exit_reason != EXIT_REASON_EPT_VIOLATION &&
+-			exit_reason != EXIT_REASON_PML_FULL &&
+-			exit_reason != EXIT_REASON_APIC_ACCESS &&
+-			exit_reason != EXIT_REASON_TASK_SWITCH)) {
+-		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+-		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+-		vcpu->run->internal.ndata = 3;
+-		vcpu->run->internal.data[0] = vectoring_info;
+-		vcpu->run->internal.data[1] = exit_reason;
+-		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
+-		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
+-			vcpu->run->internal.ndata++;
+-			vcpu->run->internal.data[3] =
+-				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+-		}
+-		return 0;
+-	}
+-
+-	if (unlikely(!enable_vnmi &&
+-		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
+-		if (vmx_interrupt_allowed(vcpu)) {
+-			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+-		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
+-			   vcpu->arch.nmi_pending) {
+-			/*
+-			 * This CPU don't support us in finding the end of an
+-			 * NMI-blocked window if the guest runs with IRQs
+-			 * disabled. So we pull the trigger after 1 s of
+-			 * futile waiting, but inform the user about this.
+-			 */
+-			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+-			       "state on VCPU %d after 1 s timeout\n",
+-			       __func__, vcpu->vcpu_id);
+-			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+-		}
+-	}
+-
+-	if (exit_reason < kvm_vmx_max_exit_handlers
+-	    && kvm_vmx_exit_handlers[exit_reason])
+-		return kvm_vmx_exit_handlers[exit_reason](vcpu);
+-	else {
+-		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
+-				exit_reason);
+-		kvm_queue_exception(vcpu, UD_VECTOR);
+-		return 1;
+-	}
+-}
+-
+-/*
+- * Software based L1D cache flush which is used when microcode providing
+- * the cache control MSR is not loaded.
+- *
+- * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
+- * flush it is required to read in 64 KiB because the replacement algorithm
+- * is not exactly LRU. This could be sized at runtime via topology
+- * information but as all relevant affected CPUs have 32KiB L1D cache size
+- * there is no point in doing so.
+- */
+-static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+-{
+-	int size = PAGE_SIZE << L1D_CACHE_ORDER;
+-
+-	/*
+-	 * This code is only executed when the the flush mode is 'cond' or
+-	 * 'always'
+-	 */
+-	if (static_branch_likely(&vmx_l1d_flush_cond)) {
+-		bool flush_l1d;
+-
+-		/*
+-		 * Clear the per-vcpu flush bit, it gets set again
+-		 * either from vcpu_run() or from one of the unsafe
+-		 * VMEXIT handlers.
+-		 */
+-		flush_l1d = vcpu->arch.l1tf_flush_l1d;
+-		vcpu->arch.l1tf_flush_l1d = false;
+-
+-		/*
+-		 * Clear the per-cpu flush bit, it gets set again from
+-		 * the interrupt handlers.
+-		 */
+-		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
+-		kvm_clear_cpu_l1tf_flush_l1d();
+-
+-		if (!flush_l1d)
+-			return;
+-	}
+-
+-	vcpu->stat.l1d_flush++;
+-
+-	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+-		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+-		return;
+-	}
+-
+-	asm volatile(
+-		/* First ensure the pages are in the TLB */
+-		"xorl	%%eax, %%eax\n"
+-		".Lpopulate_tlb:\n\t"
+-		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+-		"addl	$4096, %%eax\n\t"
+-		"cmpl	%%eax, %[size]\n\t"
+-		"jne	.Lpopulate_tlb\n\t"
+-		"xorl	%%eax, %%eax\n\t"
+-		"cpuid\n\t"
+-		/* Now fill the cache */
+-		"xorl	%%eax, %%eax\n"
+-		".Lfill_cache:\n"
+-		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+-		"addl	$64, %%eax\n\t"
+-		"cmpl	%%eax, %[size]\n\t"
+-		"jne	.Lfill_cache\n\t"
+-		"lfence\n"
+-		:: [flush_pages] "r" (vmx_l1d_flush_pages),
+-		    [size] "r" (size)
+-		: "eax", "ebx", "ecx", "edx");
+-}
+-
+-static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-
+-	if (is_guest_mode(vcpu) &&
+-		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+-		return;
+-
+-	if (irr == -1 || tpr < irr) {
+-		vmcs_write32(TPR_THRESHOLD, 0);
+-		return;
+-	}
+-
+-	vmcs_write32(TPR_THRESHOLD, irr);
+-}
+-
+-static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+-{
+-	u32 sec_exec_control;
+-
+-	if (!lapic_in_kernel(vcpu))
+-		return;
+-
+-	if (!flexpriority_enabled &&
+-	    !cpu_has_vmx_virtualize_x2apic_mode())
+-		return;
+-
+-	/* Postpone execution until vmcs01 is the current VMCS. */
+-	if (is_guest_mode(vcpu)) {
+-		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
+-		return;
+-	}
+-
+-	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+-	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+-			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+-
+-	switch (kvm_get_apic_mode(vcpu)) {
+-	case LAPIC_MODE_INVALID:
+-		WARN_ONCE(true, "Invalid local APIC state");
+-	case LAPIC_MODE_DISABLED:
+-		break;
+-	case LAPIC_MODE_XAPIC:
+-		if (flexpriority_enabled) {
+-			sec_exec_control |=
+-				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+-			vmx_flush_tlb(vcpu, true);
+-		}
+-		break;
+-	case LAPIC_MODE_X2APIC:
+-		if (cpu_has_vmx_virtualize_x2apic_mode())
+-			sec_exec_control |=
+-				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+-		break;
+-	}
+-	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
+-
+-	vmx_update_msr_bitmap(vcpu);
+-}
+-
+-static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
+-{
+-	if (!is_guest_mode(vcpu)) {
+-		vmcs_write64(APIC_ACCESS_ADDR, hpa);
+-		vmx_flush_tlb(vcpu, true);
+-	}
+-}
+-
+-static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+-{
+-	u16 status;
+-	u8 old;
+-
+-	if (max_isr == -1)
+-		max_isr = 0;
+-
+-	status = vmcs_read16(GUEST_INTR_STATUS);
+-	old = status >> 8;
+-	if (max_isr != old) {
+-		status &= 0xff;
+-		status |= max_isr << 8;
+-		vmcs_write16(GUEST_INTR_STATUS, status);
+-	}
+-}
+-
+-static void vmx_set_rvi(int vector)
+-{
+-	u16 status;
+-	u8 old;
+-
+-	if (vector == -1)
+-		vector = 0;
+-
+-	status = vmcs_read16(GUEST_INTR_STATUS);
+-	old = (u8)status & 0xff;
+-	if ((u8)vector != old) {
+-		status &= ~0xff;
+-		status |= (u8)vector;
+-		vmcs_write16(GUEST_INTR_STATUS, status);
+-	}
+-}
+-
+-static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+-{
+-	/*
+-	 * When running L2, updating RVI is only relevant when
+-	 * vmcs12 virtual-interrupt-delivery enabled.
+-	 * However, it can be enabled only when L1 also
+-	 * intercepts external-interrupts and in that case
+-	 * we should not update vmcs02 RVI but instead intercept
+-	 * interrupt. Therefore, do nothing when running L2.
+-	 */
+-	if (!is_guest_mode(vcpu))
+-		vmx_set_rvi(max_irr);
+-}
+-
+-static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int max_irr;
+-	bool max_irr_updated;
+-
+-	WARN_ON(!vcpu->arch.apicv_active);
+-	if (pi_test_on(&vmx->pi_desc)) {
+-		pi_clear_on(&vmx->pi_desc);
+-		/*
+-		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
+-		 * But on x86 this is just a compiler barrier anyway.
+-		 */
+-		smp_mb__after_atomic();
+-		max_irr_updated =
+-			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
+-
+-		/*
+-		 * If we are running L2 and L1 has a new pending interrupt
+-		 * which can be injected, we should re-evaluate
+-		 * what should be done with this new L1 interrupt.
+-		 * If L1 intercepts external-interrupts, we should
+-		 * exit from L2 to L1. Otherwise, interrupt should be
+-		 * delivered directly to L2.
+-		 */
+-		if (is_guest_mode(vcpu) && max_irr_updated) {
+-			if (nested_exit_on_intr(vcpu))
+-				kvm_vcpu_exiting_guest_mode(vcpu);
+-			else
+-				kvm_make_request(KVM_REQ_EVENT, vcpu);
+-		}
+-	} else {
+-		max_irr = kvm_lapic_find_highest_irr(vcpu);
+-	}
+-	vmx_hwapic_irr_update(vcpu, max_irr);
+-	return max_irr;
+-}
+-
+-static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
+-{
+-	u8 rvi = vmx_get_rvi();
+-	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
+-
+-	return ((rvi & 0xf0) > (vppr & 0xf0));
+-}
+-
+-static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
+-{
+-	return pi_test_on(vcpu_to_pi_desc(vcpu));
+-}
+-
+-static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+-{
+-	if (!kvm_vcpu_apicv_active(vcpu))
+-		return;
+-
+-	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+-	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+-	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+-	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+-}
+-
+-static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	pi_clear_on(&vmx->pi_desc);
+-	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
+-}
+-
+-static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
+-{
+-	if (vmx->exit_reason != EXIT_REASON_EXCEPTION_NMI)
+-		return;
+-
+-	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+-
+-	/* if exit due to PF check for async PF */
+-	if (is_page_fault(vmx->exit_intr_info))
+-		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
+-
+-	/* Handle machine checks before interrupts are enabled */
+-	if (is_machine_check(vmx->exit_intr_info))
+-		kvm_machine_check();
+-
+-	/* We need to handle NMIs before interrupts are enabled */
+-	if (is_nmi(vmx->exit_intr_info)) {
+-		kvm_before_interrupt(&vmx->vcpu);
+-		asm("int $2");
+-		kvm_after_interrupt(&vmx->vcpu);
+-	}
+-}
+-
+-static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
+-{
+-	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+-
+-	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
+-			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
+-		unsigned int vector;
+-		unsigned long entry;
+-		gate_desc *desc;
+-		struct vcpu_vmx *vmx = to_vmx(vcpu);
+-#ifdef CONFIG_X86_64
+-		unsigned long tmp;
+-#endif
+-
+-		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
+-		desc = (gate_desc *)vmx->host_idt_base + vector;
+-		entry = gate_offset(desc);
+-		asm volatile(
+-#ifdef CONFIG_X86_64
+-			"mov %%" _ASM_SP ", %[sp]\n\t"
+-			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
+-			"push $%c[ss]\n\t"
+-			"push %[sp]\n\t"
+-#endif
+-			"pushf\n\t"
+-			__ASM_SIZE(push) " $%c[cs]\n\t"
+-			CALL_NOSPEC
+-			:
+-#ifdef CONFIG_X86_64
+-			[sp]"=&r"(tmp),
+-#endif
+-			ASM_CALL_CONSTRAINT
+-			:
+-			THUNK_TARGET(entry),
+-			[ss]"i"(__KERNEL_DS),
+-			[cs]"i"(__KERNEL_CS)
+-			);
+-	}
+-}
+-STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
+-
+-static bool vmx_has_emulated_msr(int index)
+-{
+-	switch (index) {
+-	case MSR_IA32_SMBASE:
+-		/*
+-		 * We cannot do SMM unless we can run the guest in big
+-		 * real mode.
+-		 */
+-		return enable_unrestricted_guest || emulate_invalid_guest_state;
+-	case MSR_AMD64_VIRT_SPEC_CTRL:
+-		/* This is AMD only.  */
+-		return false;
+-	default:
+-		return true;
+-	}
+-}
+-
+-static bool vmx_mpx_supported(void)
+-{
+-	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
+-		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
+-}
+-
+-static bool vmx_xsaves_supported(void)
+-{
+-	return vmcs_config.cpu_based_2nd_exec_ctrl &
+-		SECONDARY_EXEC_XSAVES;
+-}
+-
+-static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+-{
+-	u32 exit_intr_info;
+-	bool unblock_nmi;
+-	u8 vector;
+-	bool idtv_info_valid;
+-
+-	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+-
+-	if (enable_vnmi) {
+-		if (vmx->loaded_vmcs->nmi_known_unmasked)
+-			return;
+-		/*
+-		 * Can't use vmx->exit_intr_info since we're not sure what
+-		 * the exit reason is.
+-		 */
+-		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+-		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+-		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+-		/*
+-		 * SDM 3: 27.7.1.2 (September 2008)
+-		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
+-		 * a guest IRET fault.
+-		 * SDM 3: 23.2.2 (September 2008)
+-		 * Bit 12 is undefined in any of the following cases:
+-		 *  If the VM exit sets the valid bit in the IDT-vectoring
+-		 *   information field.
+-		 *  If the VM exit is due to a double fault.
+-		 */
+-		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+-		    vector != DF_VECTOR && !idtv_info_valid)
+-			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+-				      GUEST_INTR_STATE_NMI);
+-		else
+-			vmx->loaded_vmcs->nmi_known_unmasked =
+-				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+-				  & GUEST_INTR_STATE_NMI);
+-	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
+-		vmx->loaded_vmcs->vnmi_blocked_time +=
+-			ktime_to_ns(ktime_sub(ktime_get(),
+-					      vmx->loaded_vmcs->entry_time));
+-}
+-
+-static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+-				      u32 idt_vectoring_info,
+-				      int instr_len_field,
+-				      int error_code_field)
+-{
+-	u8 vector;
+-	int type;
+-	bool idtv_info_valid;
+-
+-	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+-
+-	vcpu->arch.nmi_injected = false;
+-	kvm_clear_exception_queue(vcpu);
+-	kvm_clear_interrupt_queue(vcpu);
+-
+-	if (!idtv_info_valid)
+-		return;
+-
+-	kvm_make_request(KVM_REQ_EVENT, vcpu);
+-
+-	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+-	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+-
+-	switch (type) {
+-	case INTR_TYPE_NMI_INTR:
+-		vcpu->arch.nmi_injected = true;
+-		/*
+-		 * SDM 3: 27.7.1.2 (September 2008)
+-		 * Clear bit "block by NMI" before VM entry if a NMI
+-		 * delivery faulted.
+-		 */
+-		vmx_set_nmi_mask(vcpu, false);
+-		break;
+-	case INTR_TYPE_SOFT_EXCEPTION:
+-		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+-		/* fall through */
+-	case INTR_TYPE_HARD_EXCEPTION:
+-		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+-			u32 err = vmcs_read32(error_code_field);
+-			kvm_requeue_exception_e(vcpu, vector, err);
+-		} else
+-			kvm_requeue_exception(vcpu, vector);
+-		break;
+-	case INTR_TYPE_SOFT_INTR:
+-		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+-		/* fall through */
+-	case INTR_TYPE_EXT_INTR:
+-		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+-		break;
+-	default:
+-		break;
+-	}
+-}
+-
+-static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+-{
+-	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+-				  VM_EXIT_INSTRUCTION_LEN,
+-				  IDT_VECTORING_ERROR_CODE);
+-}
+-
+-static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+-{
+-	__vmx_complete_interrupts(vcpu,
+-				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+-				  VM_ENTRY_INSTRUCTION_LEN,
+-				  VM_ENTRY_EXCEPTION_ERROR_CODE);
+-
+-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+-}
+-
+-static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+-{
+-	int i, nr_msrs;
+-	struct perf_guest_switch_msr *msrs;
+-
+-	msrs = perf_guest_get_msrs(&nr_msrs);
+-
+-	if (!msrs)
+-		return;
+-
+-	for (i = 0; i < nr_msrs; i++)
+-		if (msrs[i].host == msrs[i].guest)
+-			clear_atomic_switch_msr(vmx, msrs[i].msr);
+-		else
+-			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+-					msrs[i].host, false);
+-}
+-
+-static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
+-{
+-	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
+-	if (!vmx->loaded_vmcs->hv_timer_armed)
+-		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
+-			      PIN_BASED_VMX_PREEMPTION_TIMER);
+-	vmx->loaded_vmcs->hv_timer_armed = true;
+-}
+-
+-static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u64 tscl;
+-	u32 delta_tsc;
+-
+-	if (vmx->req_immediate_exit) {
+-		vmx_arm_hv_timer(vmx, 0);
+-		return;
+-	}
+-
+-	if (vmx->hv_deadline_tsc != -1) {
+-		tscl = rdtsc();
+-		if (vmx->hv_deadline_tsc > tscl)
+-			/* set_hv_timer ensures the delta fits in 32-bits */
+-			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
+-				cpu_preemption_timer_multi);
+-		else
+-			delta_tsc = 0;
+-
+-		vmx_arm_hv_timer(vmx, delta_tsc);
+-		return;
+-	}
+-
+-	if (vmx->loaded_vmcs->hv_timer_armed)
+-		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
+-				PIN_BASED_VMX_PREEMPTION_TIMER);
+-	vmx->loaded_vmcs->hv_timer_armed = false;
+-}
+-
+-u64 __always_inline vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx)
+-{
+-	u64 guestval, hostval = this_cpu_read(x86_spec_ctrl_current);
+-
+-	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
+-		return 0;
+-
+-	guestval = __rdmsr(MSR_IA32_SPEC_CTRL);
+-
+-	/*
+-	 *
+-	 * For legacy IBRS, the IBRS bit always needs to be written after
+-	 * transitioning from a less privileged predictor mode, regardless of
+-	 * whether the guest/host values differ.
+-	 */
+-	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
+-	    guestval != hostval)
+-		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
+-
+-	barrier_nospec();
+-
+-	return guestval;
+-}
+-
+-static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned long cr3, cr4, evmcs_rsp;
+-	u64 spec_ctrl;
+-
+-	/* Record the guest's net vcpu time for enforced NMI injections. */
+-	if (unlikely(!enable_vnmi &&
+-		     vmx->loaded_vmcs->soft_vnmi_blocked))
+-		vmx->loaded_vmcs->entry_time = ktime_get();
+-
+-	/* Don't enter VMX if guest state is invalid, let the exit handler
+-	   start emulation until we arrive back to a valid state */
+-	if (vmx->emulation_required)
+-		return;
+-
+-	if (vmx->ple_window_dirty) {
+-		vmx->ple_window_dirty = false;
+-		vmcs_write32(PLE_WINDOW, vmx->ple_window);
+-	}
+-
+-	if (vmx->nested.sync_shadow_vmcs) {
+-		copy_vmcs12_to_shadow(vmx);
+-		vmx->nested.sync_shadow_vmcs = false;
+-	}
+-
+-	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
+-		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+-	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
+-		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+-
+-	cr3 = __get_current_cr3_fast();
+-	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+-		vmcs_writel(HOST_CR3, cr3);
+-		vmx->loaded_vmcs->host_state.cr3 = cr3;
+-	}
+-
+-	cr4 = cr4_read_shadow();
+-	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+-		vmcs_writel(HOST_CR4, cr4);
+-		vmx->loaded_vmcs->host_state.cr4 = cr4;
+-	}
+-
+-	/* When single-stepping over STI and MOV SS, we must clear the
+-	 * corresponding interruptibility bits in the guest state. Otherwise
+-	 * vmentry fails as it then expects bit 14 (BS) in pending debug
+-	 * exceptions being set, but that's not correct for the guest debugging
+-	 * case. */
+-	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+-		vmx_set_interrupt_shadow(vcpu, 0);
+-
+-	kvm_load_guest_xcr0(vcpu);
+-
+-	if (static_cpu_has(X86_FEATURE_PKU) &&
+-	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
+-	    vcpu->arch.pkru != vmx->host_pkru)
+-		__write_pkru(vcpu->arch.pkru);
+-
+-	atomic_switch_perf_msrs(vmx);
+-
+-	vmx_update_hv_timer(vcpu);
+-
+-	/*
+-	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
+-	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
+-	 * is no need to worry about the conditional branch over the wrmsr
+-	 * being speculatively taken.
+-	 */
+-	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
+-
+-	vmx->__launched = vmx->loaded_vmcs->launched;
+-
+-	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
+-		(unsigned long)&current_evmcs->host_rsp : 0;
+-
+-	/* L1D Flush includes CPU buffer clear to mitigate MDS */
+-	if (static_branch_unlikely(&vmx_l1d_should_flush))
+-		vmx_l1d_flush(vcpu);
+-	else if (static_branch_unlikely(&mds_user_clear))
+-		mds_clear_cpu_buffers();
+-	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
+-		 kvm_arch_has_assigned_device(vcpu->kvm))
+-		mds_clear_cpu_buffers();
+-
+-	vmx_disable_fb_clear(vmx);
+-
+-	asm volatile (
+-		/* Store host registers */
+-		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
+-		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
+-		"push %%" _ASM_CX " \n\t"
+-		"cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
+-		"je 1f \n\t"
+-		"mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
+-		/* Avoid VMWRITE when Enlightened VMCS is in use */
+-		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
+-		"jz 2f \n\t"
+-		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
+-		"jmp 1f \n\t"
+-		"2: \n\t"
+-		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
+-		"1: \n\t"
+-		/* Reload cr2 if changed */
+-		"mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
+-		"mov %%cr2, %%" _ASM_DX " \n\t"
+-		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
+-		"je 3f \n\t"
+-		"mov %%" _ASM_AX", %%cr2 \n\t"
+-		"3: \n\t"
+-		/* Check if vmlaunch of vmresume is needed */
+-		"cmpb $0, %c[launched](%%" _ASM_CX ") \n\t"
+-		/* Load guest registers.  Don't clobber flags. */
+-		"mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
+-		"mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
+-		"mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
+-		"mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
+-		"mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
+-		"mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
+-#ifdef CONFIG_X86_64
+-		"mov %c[r8](%%" _ASM_CX "),  %%r8  \n\t"
+-		"mov %c[r9](%%" _ASM_CX "),  %%r9  \n\t"
+-		"mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
+-		"mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
+-		"mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
+-		"mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
+-		"mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
+-		"mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
+-#endif
+-		/* Load guest RCX.  This kills the vmx_vcpu pointer! */
+-		"mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
+-
+-		/* Enter guest mode */
+-		"jne 1f \n\t"
+-		__ex(ASM_VMX_VMLAUNCH) "\n\t"
+-		"jmp 2f \n\t"
+-		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
+-		"2: "
+-
+-		/* Save guest's RCX to the stack placeholder (see above) */
+-		"mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
+-
+-		/* Load host's RCX, i.e. the vmx_vcpu pointer */
+-		"pop %%" _ASM_CX " \n\t"
+-
+-		/* Set vmx->fail based on EFLAGS.{CF,ZF} */
+-		"setbe %c[fail](%%" _ASM_CX ")\n\t"
+-
+-		/* Save all guest registers, including RCX from the stack */
+-		"mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
+-		"mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
+-		__ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
+-		"mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
+-		"mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
+-		"mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
+-		"mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
+-#ifdef CONFIG_X86_64
+-		"mov %%r8,  %c[r8](%%" _ASM_CX ") \n\t"
+-		"mov %%r9,  %c[r9](%%" _ASM_CX ") \n\t"
+-		"mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
+-		"mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
+-		"mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
+-		"mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
+-		"mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
+-		"mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
+-
+-		/*
+-		 * Clear all general purpose registers (except RSP, which is loaded by
+-		 * the CPU during VM-Exit) to prevent speculative use of the guest's
+-		 * values, even those that are saved/loaded via the stack.  In theory,
+-		 * an L1 cache miss when restoring registers could lead to speculative
+-		 * execution with the guest's values.  Zeroing XORs are dirt cheap,
+-		 * i.e. the extra paranoia is essentially free.
+-		 */
+-		"xor %%r8d,  %%r8d \n\t"
+-		"xor %%r9d,  %%r9d \n\t"
+-		"xor %%r10d, %%r10d \n\t"
+-		"xor %%r11d, %%r11d \n\t"
+-		"xor %%r12d, %%r12d \n\t"
+-		"xor %%r13d, %%r13d \n\t"
+-		"xor %%r14d, %%r14d \n\t"
+-		"xor %%r15d, %%r15d \n\t"
+-#endif
+-		"mov %%cr2, %%" _ASM_AX "   \n\t"
+-		"mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
+-
+-		"xor %%eax, %%eax \n\t"
+-		"xor %%ebx, %%ebx \n\t"
+-		"xor %%ecx, %%ecx \n\t"
+-		"xor %%edx, %%edx \n\t"
+-		"xor %%esi, %%esi \n\t"
+-		"xor %%edi, %%edi \n\t"
+-		"xor %%ebp, %%ebp \n\t"
+-		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
+-		".pushsection .rodata \n\t"
+-		".global vmx_return \n\t"
+-		"vmx_return: " _ASM_PTR " 2b \n\t"
+-		".popsection"
+-	      : "=c"((int){0}), "=d"((int){0}), "=S"((int){0})
+-	      : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
+-		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+-		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
+-		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+-		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
+-		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
+-		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
+-		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
+-		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
+-		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
+-		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
+-#ifdef CONFIG_X86_64
+-		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
+-		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
+-		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
+-		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
+-		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
+-		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
+-		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
+-		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
+-#endif
+-		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
+-		[wordsize]"i"(sizeof(ulong))
+-	      : "cc", "memory"
+-#ifdef CONFIG_X86_64
+-		, "rax", "rbx", "rdi"
+-		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+-#else
+-		, "eax", "ebx", "edi"
+-#endif
+-	      );
+-
+-	/*
+-	 * IMPORTANT: RSB filling and SPEC_CTRL handling must be done before
+-	 * the first unbalanced RET after vmexit!
+-	 *
+-	 * For retpoline or IBRS, RSB filling is needed to prevent poisoned RSB
+-	 * entries and (in some cases) RSB underflow.
+-	 *
+-	 * eIBRS has its own protection against poisoned RSB, so it doesn't
+-	 * need the RSB filling sequence.  But it does need to be enabled, and a
+-	 * single call to retire, before the first unbalanced RET.
+-	 *
+-	 * So no RETs before vmx_spec_ctrl_restore_host() below.
+-	 */
+-	vmexit_fill_RSB();
+-
+-	/* Save this for below */
+-	spec_ctrl = vmx_spec_ctrl_restore_host(vmx);
+-
+-	vmx_enable_fb_clear(vmx);
+-
+-	/*
+-	 * We do not use IBRS in the kernel. If this vCPU has used the
+-	 * SPEC_CTRL MSR it may have left it on; save the value and
+-	 * turn it off. This is much more efficient than blindly adding
+-	 * it to the atomic save/restore list. Especially as the former
+-	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
+-	 *
+-	 * For non-nested case:
+-	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
+-	 * save it.
+-	 *
+-	 * For nested case:
+-	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
+-	 * save it.
+-	 */
+-	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
+-		vmx->spec_ctrl = spec_ctrl;
+-
+-	/* All fields are clean at this point */
+-	if (static_branch_unlikely(&enable_evmcs))
+-		current_evmcs->hv_clean_fields |=
+-			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+-
+-	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+-	if (vmx->host_debugctlmsr)
+-		update_debugctlmsr(vmx->host_debugctlmsr);
+-
+-#ifndef CONFIG_X86_64
+-	/*
+-	 * The sysexit path does not restore ds/es, so we must set them to
+-	 * a reasonable value ourselves.
+-	 *
+-	 * We can't defer this to vmx_prepare_switch_to_host() since that
+-	 * function may be executed in interrupt context, which saves and
+-	 * restore segments around it, nullifying its effect.
+-	 */
+-	loadsegment(ds, __USER_DS);
+-	loadsegment(es, __USER_DS);
+-#endif
+-
+-	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
+-				  | (1 << VCPU_EXREG_RFLAGS)
+-				  | (1 << VCPU_EXREG_PDPTR)
+-				  | (1 << VCPU_EXREG_SEGMENTS)
+-				  | (1 << VCPU_EXREG_CR3));
+-	vcpu->arch.regs_dirty = 0;
+-
+-	/*
+-	 * eager fpu is enabled if PKEY is supported and CR4 is switched
+-	 * back on host, so it is safe to read guest PKRU from current
+-	 * XSAVE.
+-	 */
+-	if (static_cpu_has(X86_FEATURE_PKU) &&
+-	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
+-		vcpu->arch.pkru = __read_pkru();
+-		if (vcpu->arch.pkru != vmx->host_pkru)
+-			__write_pkru(vmx->host_pkru);
+-	}
+-
+-	kvm_put_guest_xcr0(vcpu);
+-
+-	vmx->nested.nested_run_pending = 0;
+-	vmx->idt_vectoring_info = 0;
+-
+-	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
+-	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
+-		kvm_machine_check();
+-
+-	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+-		return;
+-
+-	vmx->loaded_vmcs->launched = 1;
+-	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+-
+-	vmx_complete_atomic_exit(vmx);
+-	vmx_recover_nmi_blocking(vmx);
+-	vmx_complete_interrupts(vmx);
+-}
+-STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
+-
+-static struct kvm *vmx_vm_alloc(void)
+-{
+-	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
+-
+-	if (!kvm_vmx)
+-		return NULL;
+-
+-	return &kvm_vmx->kvm;
+-}
+-
+-static void vmx_vm_free(struct kvm *kvm)
+-{
+-	vfree(to_kvm_vmx(kvm));
+-}
+-
+-static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int cpu;
+-
+-	if (vmx->loaded_vmcs == vmcs)
+-		return;
+-
+-	cpu = get_cpu();
+-	vmx_vcpu_put(vcpu);
+-	vmx->loaded_vmcs = vmcs;
+-	vmx_vcpu_load(vcpu, cpu);
+-	put_cpu();
+-}
+-
+-/*
+- * Ensure that the current vmcs of the logical processor is the
+- * vmcs01 of the vcpu before calling free_nested().
+- */
+-static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
+-{
+-       struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-       vcpu_load(vcpu);
+-       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+-       free_nested(vmx);
+-       vcpu_put(vcpu);
+-}
+-
+-static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (enable_pml)
+-		vmx_destroy_pml_buffer(vmx);
+-	free_vpid(vmx->vpid);
+-	leave_guest_mode(vcpu);
+-	vmx_free_vcpu_nested(vcpu);
+-	free_loaded_vmcs(vmx->loaded_vmcs);
+-	kfree(vmx->guest_msrs);
+-	kvm_vcpu_uninit(vcpu);
+-	kmem_cache_free(kvm_vcpu_cache, vmx);
+-}
+-
+-static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
+-{
+-	int err;
+-	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+-	unsigned long *msr_bitmap;
+-	int cpu;
+-
+-	if (!vmx)
+-		return ERR_PTR(-ENOMEM);
+-
+-	vmx->vpid = allocate_vpid();
+-
+-	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
+-	if (err)
+-		goto free_vcpu;
+-
+-	err = -ENOMEM;
+-
+-	/*
+-	 * If PML is turned on, failure on enabling PML just results in failure
+-	 * of creating the vcpu, therefore we can simplify PML logic (by
+-	 * avoiding dealing with cases, such as enabling PML partially on vcpus
+-	 * for the guest, etc.
+-	 */
+-	if (enable_pml) {
+-		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
+-		if (!vmx->pml_pg)
+-			goto uninit_vcpu;
+-	}
+-
+-	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
+-	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
+-		     > PAGE_SIZE);
+-
+-	if (!vmx->guest_msrs)
+-		goto free_pml;
+-
+-	err = alloc_loaded_vmcs(&vmx->vmcs01);
+-	if (err < 0)
+-		goto free_msrs;
+-
+-	msr_bitmap = vmx->vmcs01.msr_bitmap;
+-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
+-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
+-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
+-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
+-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
+-	vmx->msr_bitmap_mode = 0;
+-
+-	vmx->loaded_vmcs = &vmx->vmcs01;
+-	cpu = get_cpu();
+-	vmx_vcpu_load(&vmx->vcpu, cpu);
+-	vmx->vcpu.cpu = cpu;
+-	vmx_vcpu_setup(vmx);
+-	vmx_vcpu_put(&vmx->vcpu);
+-	put_cpu();
+-	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
+-		err = alloc_apic_access_page(kvm);
+-		if (err)
+-			goto free_vmcs;
+-	}
+-
+-	if (enable_ept && !enable_unrestricted_guest) {
+-		err = init_rmode_identity_map(kvm);
+-		if (err)
+-			goto free_vmcs;
+-	}
+-
+-	if (nested)
+-		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
+-					   kvm_vcpu_apicv_active(&vmx->vcpu));
+-
+-	vmx->nested.posted_intr_nv = -1;
+-	vmx->nested.current_vmptr = -1ull;
+-
+-	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
+-
+-	/*
+-	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
+-	 * or POSTED_INTR_WAKEUP_VECTOR.
+-	 */
+-	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
+-	vmx->pi_desc.sn = 1;
+-
+-	return &vmx->vcpu;
+-
+-free_vmcs:
+-	free_loaded_vmcs(vmx->loaded_vmcs);
+-free_msrs:
+-	kfree(vmx->guest_msrs);
+-free_pml:
+-	vmx_destroy_pml_buffer(vmx);
+-uninit_vcpu:
+-	kvm_vcpu_uninit(&vmx->vcpu);
+-free_vcpu:
+-	free_vpid(vmx->vpid);
+-	kmem_cache_free(kvm_vcpu_cache, vmx);
+-	return ERR_PTR(err);
+-}
+-
+-#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
+-#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
+-
+-static int vmx_vm_init(struct kvm *kvm)
+-{
+-	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
+-
+-	if (!ple_gap)
+-		kvm->arch.pause_in_guest = true;
+-
+-	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
+-		switch (l1tf_mitigation) {
+-		case L1TF_MITIGATION_OFF:
+-		case L1TF_MITIGATION_FLUSH_NOWARN:
+-			/* 'I explicitly don't care' is set */
+-			break;
+-		case L1TF_MITIGATION_FLUSH:
+-		case L1TF_MITIGATION_FLUSH_NOSMT:
+-		case L1TF_MITIGATION_FULL:
+-			/*
+-			 * Warn upon starting the first VM in a potentially
+-			 * insecure environment.
+-			 */
+-			if (sched_smt_active())
+-				pr_warn_once(L1TF_MSG_SMT);
+-			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
+-				pr_warn_once(L1TF_MSG_L1D);
+-			break;
+-		case L1TF_MITIGATION_FULL_FORCE:
+-			/* Flush is enforced */
+-			break;
+-		}
+-	}
+-	return 0;
+-}
+-
+-static void __init vmx_check_processor_compat(void *rtn)
+-{
+-	struct vmcs_config vmcs_conf;
+-
+-	*(int *)rtn = 0;
+-	if (setup_vmcs_config(&vmcs_conf) < 0)
+-		*(int *)rtn = -EIO;
+-	nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
+-	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+-		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+-				smp_processor_id());
+-		*(int *)rtn = -EIO;
+-	}
+-}
+-
+-static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+-{
+-	u8 cache;
+-	u64 ipat = 0;
+-
+-	/* For VT-d and EPT combination
+-	 * 1. MMIO: always map as UC
+-	 * 2. EPT with VT-d:
+-	 *   a. VT-d without snooping control feature: can't guarantee the
+-	 *	result, try to trust guest.
+-	 *   b. VT-d with snooping control feature: snooping control feature of
+-	 *	VT-d engine can guarantee the cache correctness. Just set it
+-	 *	to WB to keep consistent with host. So the same as item 3.
+-	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
+-	 *    consistent with host MTRR
+-	 */
+-	if (is_mmio) {
+-		cache = MTRR_TYPE_UNCACHABLE;
+-		goto exit;
+-	}
+-
+-	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
+-		ipat = VMX_EPT_IPAT_BIT;
+-		cache = MTRR_TYPE_WRBACK;
+-		goto exit;
+-	}
+-
+-	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
+-		ipat = VMX_EPT_IPAT_BIT;
+-		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+-			cache = MTRR_TYPE_WRBACK;
+-		else
+-			cache = MTRR_TYPE_UNCACHABLE;
+-		goto exit;
+-	}
+-
+-	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
+-
+-exit:
+-	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
+-}
+-
+-static int vmx_get_lpage_level(void)
+-{
+-	if (enable_ept && !cpu_has_vmx_ept_1g_page())
+-		return PT_DIRECTORY_LEVEL;
+-	else
+-		/* For shadow and EPT supported 1GB page */
+-		return PT_PDPE_LEVEL;
+-}
+-
+-static void vmcs_set_secondary_exec_control(u32 new_ctl)
+-{
+-	/*
+-	 * These bits in the secondary execution controls field
+-	 * are dynamic, the others are mostly based on the hypervisor
+-	 * architecture and the guest's CPUID.  Do not touch the
+-	 * dynamic bits.
+-	 */
+-	u32 mask =
+-		SECONDARY_EXEC_SHADOW_VMCS |
+-		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+-		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+-		SECONDARY_EXEC_DESC;
+-
+-	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+-
+-	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+-		     (new_ctl & ~mask) | (cur_ctl & mask));
+-}
+-
+-/*
+- * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
+- * (indicating "allowed-1") if they are supported in the guest's CPUID.
+- */
+-static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct kvm_cpuid_entry2 *entry;
+-
+-	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
+-	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
+-
+-#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
+-	if (entry && (entry->_reg & (_cpuid_mask)))			\
+-		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
+-} while (0)
+-
+-	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
+-	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
+-	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
+-	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
+-	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
+-	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
+-	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
+-	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
+-	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
+-	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
+-	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
+-	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
+-	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
+-	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
+-	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
+-
+-	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+-	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
+-	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
+-	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
+-	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
+-	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
+-
+-#undef cr4_fixed1_update
+-}
+-
+-static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (kvm_mpx_supported()) {
+-		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
+-
+-		if (mpx_enabled) {
+-			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+-			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+-		} else {
+-			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
+-			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
+-		}
+-	}
+-}
+-
+-static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (cpu_has_secondary_exec_ctrls()) {
+-		vmx_compute_secondary_exec_control(vmx);
+-		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
+-	}
+-
+-	if (nested_vmx_allowed(vcpu))
+-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+-			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+-	else
+-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+-			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+-
+-	if (nested_vmx_allowed(vcpu)) {
+-		nested_vmx_cr_fixed1_bits_update(vcpu);
+-		nested_vmx_entry_exit_ctls_update(vcpu);
+-	}
+-}
+-
+-static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+-{
+-	if (func == 1 && nested)
+-		entry->ecx |= bit(X86_FEATURE_VMX);
+-}
+-
+-static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+-		struct x86_exception *fault)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 exit_reason;
+-	unsigned long exit_qualification = vcpu->arch.exit_qualification;
+-
+-	if (vmx->nested.pml_full) {
+-		exit_reason = EXIT_REASON_PML_FULL;
+-		vmx->nested.pml_full = false;
+-		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
+-	} else if (fault->error_code & PFERR_RSVD_MASK)
+-		exit_reason = EXIT_REASON_EPT_MISCONFIG;
+-	else
+-		exit_reason = EXIT_REASON_EPT_VIOLATION;
+-
+-	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
+-	vmcs12->guest_physical_address = fault->address;
+-}
+-
+-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
+-{
+-	return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
+-}
+-
+-/* Callbacks for nested_ept_init_mmu_context: */
+-
+-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+-{
+-	/* return the page table to be shadowed - in our case, EPT12 */
+-	return get_vmcs12(vcpu)->ept_pointer;
+-}
+-
+-static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+-{
+-	WARN_ON(mmu_is_nested(vcpu));
+-	if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
+-		return 1;
+-
+-	kvm_init_shadow_ept_mmu(vcpu,
+-			to_vmx(vcpu)->nested.msrs.ept_caps &
+-			VMX_EPT_EXECUTE_ONLY_BIT,
+-			nested_ept_ad_enabled(vcpu),
+-			nested_ept_get_cr3(vcpu));
+-	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
+-	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
+-	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
+-
+-	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
+-	return 0;
+-}
+-
+-static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+-{
+-	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+-}
+-
+-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+-					    u16 error_code)
+-{
+-	bool inequality, bit;
+-
+-	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+-	inequality =
+-		(error_code & vmcs12->page_fault_error_code_mask) !=
+-		 vmcs12->page_fault_error_code_match;
+-	return inequality ^ bit;
+-}
+-
+-static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+-		struct x86_exception *fault)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-
+-	WARN_ON(!is_guest_mode(vcpu));
+-
+-	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
+-		!to_vmx(vcpu)->nested.nested_run_pending) {
+-		vmcs12->vm_exit_intr_error_code = fault->error_code;
+-		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+-				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
+-				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
+-				  fault->address);
+-	} else {
+-		kvm_inject_page_fault(vcpu, fault);
+-	}
+-}
+-
+-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+-						 struct vmcs12 *vmcs12);
+-
+-static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct page *page;
+-	u64 hpa;
+-
+-	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+-		/*
+-		 * Translate L1 physical address to host physical
+-		 * address for vmcs02. Keep the page pinned, so this
+-		 * physical address remains valid. We keep a reference
+-		 * to it so we can release it later.
+-		 */
+-		if (vmx->nested.apic_access_page) { /* shouldn't happen */
+-			kvm_release_page_dirty(vmx->nested.apic_access_page);
+-			vmx->nested.apic_access_page = NULL;
+-		}
+-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
+-		/*
+-		 * If translation failed, no matter: This feature asks
+-		 * to exit when accessing the given address, and if it
+-		 * can never be accessed, this feature won't do
+-		 * anything anyway.
+-		 */
+-		if (!is_error_page(page)) {
+-			vmx->nested.apic_access_page = page;
+-			hpa = page_to_phys(vmx->nested.apic_access_page);
+-			vmcs_write64(APIC_ACCESS_ADDR, hpa);
+-		} else {
+-			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+-					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+-		}
+-	}
+-
+-	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+-		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
+-			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+-			vmx->nested.virtual_apic_page = NULL;
+-		}
+-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
+-
+-		/*
+-		 * If translation failed, VM entry will fail because
+-		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
+-		 * Failing the vm entry is _not_ what the processor
+-		 * does but it's basically the only possibility we
+-		 * have.  We could still enter the guest if CR8 load
+-		 * exits are enabled, CR8 store exits are enabled, and
+-		 * virtualize APIC access is disabled; in this case
+-		 * the processor would never use the TPR shadow and we
+-		 * could simply clear the bit from the execution
+-		 * control.  But such a configuration is useless, so
+-		 * let's keep the code simple.
+-		 */
+-		if (!is_error_page(page)) {
+-			vmx->nested.virtual_apic_page = page;
+-			hpa = page_to_phys(vmx->nested.virtual_apic_page);
+-			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
+-		}
+-	}
+-
+-	if (nested_cpu_has_posted_intr(vmcs12)) {
+-		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+-			kunmap(vmx->nested.pi_desc_page);
+-			kvm_release_page_dirty(vmx->nested.pi_desc_page);
+-			vmx->nested.pi_desc_page = NULL;
+-			vmx->nested.pi_desc = NULL;
+-			vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
+-		}
+-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
+-		if (is_error_page(page))
+-			return;
+-		vmx->nested.pi_desc_page = page;
+-		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
+-		vmx->nested.pi_desc =
+-			(struct pi_desc *)((void *)vmx->nested.pi_desc +
+-			(unsigned long)(vmcs12->posted_intr_desc_addr &
+-			(PAGE_SIZE - 1)));
+-		vmcs_write64(POSTED_INTR_DESC_ADDR,
+-			page_to_phys(vmx->nested.pi_desc_page) +
+-			(unsigned long)(vmcs12->posted_intr_desc_addr &
+-			(PAGE_SIZE - 1)));
+-	}
+-	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
+-		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+-			      CPU_BASED_USE_MSR_BITMAPS);
+-	else
+-		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+-				CPU_BASED_USE_MSR_BITMAPS);
+-}
+-
+-static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+-{
+-	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	/*
+-	 * A timer value of zero is architecturally guaranteed to cause
+-	 * a VMExit prior to executing any instructions in the guest.
+-	 */
+-	if (preemption_timeout == 0) {
+-		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+-		return;
+-	}
+-
+-	if (vcpu->arch.virtual_tsc_khz == 0)
+-		return;
+-
+-	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+-	preemption_timeout *= 1000000;
+-	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+-	hrtimer_start(&vmx->nested.preemption_timer,
+-		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+-}
+-
+-static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
+-					       struct vmcs12 *vmcs12)
+-{
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+-		return 0;
+-
+-	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
+-	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+-						struct vmcs12 *vmcs12)
+-{
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+-		return 0;
+-
+-	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
+-						struct vmcs12 *vmcs12)
+-{
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+-		return 0;
+-
+-	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
+-	int msr;
+-
+-	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+-		unsigned word = msr / BITS_PER_LONG;
+-
+-		msr_bitmap[word] = ~0;
+-		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
+-	}
+-}
+-
+-/*
+- * Merge L0's and L1's MSR bitmap, return false to indicate that
+- * we do not use the hardware.
+- */
+-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+-						 struct vmcs12 *vmcs12)
+-{
+-	int msr;
+-	struct page *page;
+-	unsigned long *msr_bitmap_l1;
+-	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
+-	/*
+-	 * pred_cmd & spec_ctrl are trying to verify two things:
+-	 *
+-	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
+-	 *    ensures that we do not accidentally generate an L02 MSR bitmap
+-	 *    from the L12 MSR bitmap that is too permissive.
+-	 * 2. That L1 or L2s have actually used the MSR. This avoids
+-	 *    unnecessarily merging of the bitmap if the MSR is unused. This
+-	 *    works properly because we only update the L01 MSR bitmap lazily.
+-	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
+-	 *    updated to reflect this when L1 (or its L2s) actually write to
+-	 *    the MSR.
+-	 */
+-	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
+-	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
+-
+-	/* Nothing to do if the MSR bitmap is not in use.  */
+-	if (!cpu_has_vmx_msr_bitmap() ||
+-	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+-		return false;
+-
+-	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+-	    !pred_cmd && !spec_ctrl)
+-		return false;
+-
+-	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
+-	if (is_error_page(page))
+-		return false;
+-
+-	msr_bitmap_l1 = (unsigned long *)kmap(page);
+-
+-	/*
+-	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
+-	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
+-	 * the x2APIC MSR range and selectively disable them below.
+-	 */
+-	enable_x2apic_msr_intercepts(msr_bitmap_l0);
+-
+-	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
+-		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
+-			/*
+-			 * L0 need not intercept reads for MSRs between 0x800
+-			 * and 0x8ff, it just lets the processor take the value
+-			 * from the virtual-APIC page; take those 256 bits
+-			 * directly from the L1 bitmap.
+-			 */
+-			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+-				unsigned word = msr / BITS_PER_LONG;
+-
+-				msr_bitmap_l0[word] = msr_bitmap_l1[word];
+-			}
+-		}
+-
+-		nested_vmx_disable_intercept_for_msr(
+-			msr_bitmap_l1, msr_bitmap_l0,
+-			X2APIC_MSR(APIC_TASKPRI),
+-			MSR_TYPE_R | MSR_TYPE_W);
+-
+-		if (nested_cpu_has_vid(vmcs12)) {
+-			nested_vmx_disable_intercept_for_msr(
+-				msr_bitmap_l1, msr_bitmap_l0,
+-				X2APIC_MSR(APIC_EOI),
+-				MSR_TYPE_W);
+-			nested_vmx_disable_intercept_for_msr(
+-				msr_bitmap_l1, msr_bitmap_l0,
+-				X2APIC_MSR(APIC_SELF_IPI),
+-				MSR_TYPE_W);
+-		}
+-	}
+-
+-	if (spec_ctrl)
+-		nested_vmx_disable_intercept_for_msr(
+-					msr_bitmap_l1, msr_bitmap_l0,
+-					MSR_IA32_SPEC_CTRL,
+-					MSR_TYPE_R | MSR_TYPE_W);
+-
+-	if (pred_cmd)
+-		nested_vmx_disable_intercept_for_msr(
+-					msr_bitmap_l1, msr_bitmap_l0,
+-					MSR_IA32_PRED_CMD,
+-					MSR_TYPE_W);
+-
+-	kunmap(page);
+-	kvm_release_page_clean(page);
+-
+-	return true;
+-}
+-
+-static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
+-				       struct vmcs12 *vmcs12)
+-{
+-	struct vmcs12 *shadow;
+-	struct page *page;
+-
+-	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+-	    vmcs12->vmcs_link_pointer == -1ull)
+-		return;
+-
+-	shadow = get_shadow_vmcs12(vcpu);
+-	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+-
+-	memcpy(shadow, kmap(page), VMCS12_SIZE);
+-
+-	kunmap(page);
+-	kvm_release_page_clean(page);
+-}
+-
+-static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
+-					      struct vmcs12 *vmcs12)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+-	    vmcs12->vmcs_link_pointer == -1ull)
+-		return;
+-
+-	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
+-			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
+-}
+-
+-static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
+-					  struct vmcs12 *vmcs12)
+-{
+-	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+-	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
+-		return -EINVAL;
+-	else
+-		return 0;
+-}
+-
+-static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+-					   struct vmcs12 *vmcs12)
+-{
+-	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+-	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
+-	    !nested_cpu_has_vid(vmcs12) &&
+-	    !nested_cpu_has_posted_intr(vmcs12))
+-		return 0;
+-
+-	/*
+-	 * If virtualize x2apic mode is enabled,
+-	 * virtualize apic access must be disabled.
+-	 */
+-	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+-	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+-		return -EINVAL;
+-
+-	/*
+-	 * If virtual interrupt delivery is enabled,
+-	 * we must exit on external interrupts.
+-	 */
+-	if (nested_cpu_has_vid(vmcs12) &&
+-	   !nested_exit_on_intr(vcpu))
+-		return -EINVAL;
+-
+-	/*
+-	 * bits 15:8 should be zero in posted_intr_nv,
+-	 * the descriptor address has been already checked
+-	 * in nested_get_vmcs12_pages.
+-	 *
+-	 * bits 5:0 of posted_intr_desc_addr should be zero.
+-	 */
+-	if (nested_cpu_has_posted_intr(vmcs12) &&
+-	   (!nested_cpu_has_vid(vmcs12) ||
+-	    !nested_exit_intr_ack_set(vcpu) ||
+-	    (vmcs12->posted_intr_nv & 0xff00) ||
+-	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
+-	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
+-		return -EINVAL;
+-
+-	/* tpr shadow is needed by all apicv features. */
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+-				       unsigned long count_field,
+-				       unsigned long addr_field)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	int maxphyaddr;
+-	u64 count, addr;
+-
+-	if (vmcs12_read_any(vmcs12, count_field, &count) ||
+-	    vmcs12_read_any(vmcs12, addr_field, &addr)) {
+-		WARN_ON(1);
+-		return -EINVAL;
+-	}
+-	if (count == 0)
+-		return 0;
+-	maxphyaddr = cpuid_maxphyaddr(vcpu);
+-	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+-	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
+-		pr_debug_ratelimited(
+-			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
+-			addr_field, maxphyaddr, count, addr);
+-		return -EINVAL;
+-	}
+-	return 0;
+-}
+-
+-static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
+-						struct vmcs12 *vmcs12)
+-{
+-	if (vmcs12->vm_exit_msr_load_count == 0 &&
+-	    vmcs12->vm_exit_msr_store_count == 0 &&
+-	    vmcs12->vm_entry_msr_load_count == 0)
+-		return 0; /* Fast path */
+-	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
+-					VM_EXIT_MSR_LOAD_ADDR) ||
+-	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
+-					VM_EXIT_MSR_STORE_ADDR) ||
+-	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
+-					VM_ENTRY_MSR_LOAD_ADDR))
+-		return -EINVAL;
+-	return 0;
+-}
+-
+-static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
+-					 struct vmcs12 *vmcs12)
+-{
+-	u64 address = vmcs12->pml_address;
+-	int maxphyaddr = cpuid_maxphyaddr(vcpu);
+-
+-	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
+-		if (!nested_cpu_has_ept(vmcs12) ||
+-		    !IS_ALIGNED(address, 4096)  ||
+-		    address >> maxphyaddr)
+-			return -EINVAL;
+-	}
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
+-						 struct vmcs12 *vmcs12)
+-{
+-	if (!nested_cpu_has_shadow_vmcs(vmcs12))
+-		return 0;
+-
+-	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
+-	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+-				       struct vmx_msr_entry *e)
+-{
+-	/* x2APIC MSR accesses are not allowed */
+-	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
+-		return -EINVAL;
+-	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+-	    e->index == MSR_IA32_UCODE_REV)
+-		return -EINVAL;
+-	if (e->reserved != 0)
+-		return -EINVAL;
+-	return 0;
+-}
+-
+-static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+-				     struct vmx_msr_entry *e)
+-{
+-	if (e->index == MSR_FS_BASE ||
+-	    e->index == MSR_GS_BASE ||
+-	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+-	    nested_vmx_msr_check_common(vcpu, e))
+-		return -EINVAL;
+-	return 0;
+-}
+-
+-static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+-				      struct vmx_msr_entry *e)
+-{
+-	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+-	    nested_vmx_msr_check_common(vcpu, e))
+-		return -EINVAL;
+-	return 0;
+-}
+-
+-/*
+- * Load guest's/host's msr at nested entry/exit.
+- * return 0 for success, entry index for failure.
+- */
+-static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+-{
+-	u32 i;
+-	struct vmx_msr_entry e;
+-	struct msr_data msr;
+-
+-	msr.host_initiated = false;
+-	for (i = 0; i < count; i++) {
+-		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
+-					&e, sizeof(e))) {
+-			pr_debug_ratelimited(
+-				"%s cannot read MSR entry (%u, 0x%08llx)\n",
+-				__func__, i, gpa + i * sizeof(e));
+-			goto fail;
+-		}
+-		if (nested_vmx_load_msr_check(vcpu, &e)) {
+-			pr_debug_ratelimited(
+-				"%s check failed (%u, 0x%x, 0x%x)\n",
+-				__func__, i, e.index, e.reserved);
+-			goto fail;
+-		}
+-		msr.index = e.index;
+-		msr.data = e.value;
+-		if (kvm_set_msr(vcpu, &msr)) {
+-			pr_debug_ratelimited(
+-				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+-				__func__, i, e.index, e.value);
+-			goto fail;
+-		}
+-	}
+-	return 0;
+-fail:
+-	return i + 1;
+-}
+-
+-static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+-{
+-	u32 i;
+-	struct vmx_msr_entry e;
+-
+-	for (i = 0; i < count; i++) {
+-		struct msr_data msr_info;
+-		if (kvm_vcpu_read_guest(vcpu,
+-					gpa + i * sizeof(e),
+-					&e, 2 * sizeof(u32))) {
+-			pr_debug_ratelimited(
+-				"%s cannot read MSR entry (%u, 0x%08llx)\n",
+-				__func__, i, gpa + i * sizeof(e));
+-			return -EINVAL;
+-		}
+-		if (nested_vmx_store_msr_check(vcpu, &e)) {
+-			pr_debug_ratelimited(
+-				"%s check failed (%u, 0x%x, 0x%x)\n",
+-				__func__, i, e.index, e.reserved);
+-			return -EINVAL;
+-		}
+-		msr_info.host_initiated = false;
+-		msr_info.index = e.index;
+-		if (kvm_get_msr(vcpu, &msr_info)) {
+-			pr_debug_ratelimited(
+-				"%s cannot read MSR (%u, 0x%x)\n",
+-				__func__, i, e.index);
+-			return -EINVAL;
+-		}
+-		if (kvm_vcpu_write_guest(vcpu,
+-					 gpa + i * sizeof(e) +
+-					     offsetof(struct vmx_msr_entry, value),
+-					 &msr_info.data, sizeof(msr_info.data))) {
+-			pr_debug_ratelimited(
+-				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+-				__func__, i, e.index, msr_info.data);
+-			return -EINVAL;
+-		}
+-	}
+-	return 0;
+-}
+-
+-static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
+-{
+-	unsigned long invalid_mask;
+-
+-	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+-	return (val & invalid_mask) == 0;
+-}
+-
+-/*
+- * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
+- * emulating VM entry into a guest with EPT enabled.
+- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+- * is assigned to entry_failure_code on failure.
+- */
+-static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
+-			       u32 *entry_failure_code)
+-{
+-	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
+-		if (!nested_cr3_valid(vcpu, cr3)) {
+-			*entry_failure_code = ENTRY_FAIL_DEFAULT;
+-			return 1;
+-		}
+-
+-		/*
+-		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
+-		 * must not be dereferenced.
+-		 */
+-		if (is_pae_paging(vcpu) && !nested_ept) {
+-			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
+-				*entry_failure_code = ENTRY_FAIL_PDPTE;
+-				return 1;
+-			}
+-		}
+-	}
+-
+-	if (!nested_ept)
+-		kvm_mmu_new_cr3(vcpu, cr3, false);
+-
+-	vcpu->arch.cr3 = cr3;
+-	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+-
+-	kvm_init_mmu(vcpu, false);
+-
+-	return 0;
+-}
+-
+-static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+-	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+-	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+-	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+-	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+-	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+-	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+-	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+-	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+-	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+-	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+-	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+-	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+-	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+-	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+-	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+-	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+-	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+-	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+-	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+-	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+-	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+-	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+-	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+-	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+-	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+-	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+-	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+-	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+-	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+-	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+-
+-	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+-	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+-		vmcs12->guest_pending_dbg_exceptions);
+-	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+-	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+-
+-	if (nested_cpu_has_xsaves(vmcs12))
+-		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+-	vmcs_write64(VMCS_LINK_POINTER, -1ull);
+-
+-	if (cpu_has_vmx_posted_intr())
+-		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
+-
+-	/*
+-	 * Whether page-faults are trapped is determined by a combination of
+-	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+-	 * If enable_ept, L0 doesn't care about page faults and we should
+-	 * set all of these to L1's desires. However, if !enable_ept, L0 does
+-	 * care about (at least some) page faults, and because it is not easy
+-	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
+-	 * to exit on each and every L2 page fault. This is done by setting
+-	 * MASK=MATCH=0 and (see below) EB.PF=1.
+-	 * Note that below we don't need special code to set EB.PF beyond the
+-	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+-	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+-	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+-	 */
+-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+-		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+-		enable_ept ? vmcs12->page_fault_error_code_match : 0);
+-
+-	/* All VMFUNCs are currently emulated through L0 vmexits.  */
+-	if (cpu_has_vmx_vmfunc())
+-		vmcs_write64(VM_FUNCTION_CONTROL, 0);
+-
+-	if (cpu_has_vmx_apicv()) {
+-		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
+-		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
+-		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
+-		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
+-	}
+-
+-	/*
+-	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
+-	 * Some constant fields are set here by vmx_set_constant_host_state().
+-	 * Other fields are different per CPU, and will be set later when
+-	 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
+-	 * is called.
+-	 */
+-	vmx_set_constant_host_state(vmx);
+-
+-	/*
+-	 * Set the MSR load/store lists to match L0's settings.
+-	 */
+-	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+-	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+-	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+-
+-	set_cr4_guest_host_mask(vmx);
+-
+-	if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
+-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+-		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+-
+-	if (enable_vpid) {
+-		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
+-			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
+-		else
+-			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+-	}
+-
+-	/*
+-	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
+-	 */
+-	if (enable_ept) {
+-		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+-		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+-		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+-		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+-	}
+-
+-	if (cpu_has_vmx_msr_bitmap())
+-		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
+-}
+-
+-/*
+- * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+- * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+- * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+- * guest in a way that will both be appropriate to L1's requests, and our
+- * needs. In addition to modifying the active vmcs (which is vmcs02), this
+- * function also has additional necessary side-effects, like setting various
+- * vcpu->arch fields.
+- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+- * is assigned to entry_failure_code on failure.
+- */
+-static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+-			  u32 *entry_failure_code)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 exec_control, vmcs12_exec_ctrl;
+-
+-	if (vmx->nested.dirty_vmcs12) {
+-		prepare_vmcs02_full(vcpu, vmcs12);
+-		vmx->nested.dirty_vmcs12 = false;
+-	}
+-
+-	/*
+-	 * First, the fields that are shadowed.  This must be kept in sync
+-	 * with vmx_shadow_fields.h.
+-	 */
+-
+-	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+-	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+-	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+-	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+-	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+-
+-	if (vmx->nested.nested_run_pending &&
+-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
+-		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+-		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+-	} else {
+-		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+-		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+-	}
+-	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
+-	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
+-		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+-	if (vmx->nested.nested_run_pending) {
+-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+-			     vmcs12->vm_entry_intr_info_field);
+-		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+-			     vmcs12->vm_entry_exception_error_code);
+-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+-			     vmcs12->vm_entry_instruction_len);
+-		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+-			     vmcs12->guest_interruptibility_info);
+-		vmx->loaded_vmcs->nmi_known_unmasked =
+-			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
+-	} else {
+-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+-	}
+-	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+-
+-	exec_control = vmcs12->pin_based_vm_exec_control;
+-
+-	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
+-	exec_control |= vmcs_config.pin_based_exec_ctrl;
+-	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+-	vmx->loaded_vmcs->hv_timer_armed = false;
+-
+-	/* Posted interrupts setting is only taken from vmcs12.  */
+-	if (nested_cpu_has_posted_intr(vmcs12)) {
+-		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+-		vmx->nested.pi_pending = false;
+-	} else {
+-		exec_control &= ~PIN_BASED_POSTED_INTR;
+-	}
+-
+-	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+-
+-	vmx->nested.preemption_timer_expired = false;
+-	if (nested_cpu_has_preemption_timer(vmcs12))
+-		vmx_start_preemption_timer(vcpu);
+-
+-	if (cpu_has_secondary_exec_ctrls()) {
+-		exec_control = vmx->secondary_exec_control;
+-
+-		/* Take the following fields only from vmcs12 */
+-		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+-				  SECONDARY_EXEC_ENABLE_INVPCID |
+-				  SECONDARY_EXEC_RDTSCP |
+-				  SECONDARY_EXEC_XSAVES |
+-				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+-				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
+-				  SECONDARY_EXEC_ENABLE_VMFUNC);
+-		if (nested_cpu_has(vmcs12,
+-				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
+-			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
+-				~SECONDARY_EXEC_ENABLE_PML;
+-			exec_control |= vmcs12_exec_ctrl;
+-		}
+-
+-		/* VMCS shadowing for L2 is emulated for now */
+-		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+-
+-		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+-			vmcs_write16(GUEST_INTR_STATUS,
+-				vmcs12->guest_intr_status);
+-
+-		/*
+-		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
+-		 * nested_get_vmcs12_pages will either fix it up or
+-		 * remove the VM execution control.
+-		 */
+-		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+-			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
+-
+-		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
+-			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+-
+-		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+-	}
+-
+-	/*
+-	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+-	 * entry, but only if the current (host) sp changed from the value
+-	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
+-	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
+-	 * here we just force the write to happen on entry.
+-	 */
+-	vmx->host_rsp = 0;
+-
+-	exec_control = vmx_exec_control(vmx); /* L0's desires */
+-	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+-	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+-	exec_control &= ~CPU_BASED_TPR_SHADOW;
+-	exec_control |= vmcs12->cpu_based_vm_exec_control;
+-
+-	/*
+-	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+-	 * nested_get_vmcs12_pages can't fix it up, the illegal value
+-	 * will result in a VM entry failure.
+-	 */
+-	if (exec_control & CPU_BASED_TPR_SHADOW) {
+-		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+-		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+-	} else {
+-#ifdef CONFIG_X86_64
+-		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
+-				CPU_BASED_CR8_STORE_EXITING;
+-#endif
+-	}
+-
+-	/*
+-	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
+-	 * for I/O port accesses.
+-	 */
+-	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+-	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+-
+-	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+-
+-	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+-	 * bitwise-or of what L1 wants to trap for L2, and what we want to
+-	 * trap. Note that CR0.TS also needs updating - we do this later.
+-	 */
+-	update_exception_bitmap(vcpu);
+-	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+-	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+-
+-	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
+-	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+-	 * bits are further modified by vmx_set_efer() below.
+-	 */
+-	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
+-
+-	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
+-	 * emulated by vmx_set_efer(), below.
+-	 */
+-	vm_entry_controls_init(vmx, 
+-		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
+-			~VM_ENTRY_IA32E_MODE) |
+-		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
+-
+-	if (vmx->nested.nested_run_pending &&
+-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
+-		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+-		vcpu->arch.pat = vmcs12->guest_ia32_pat;
+-	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+-		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+-	}
+-
+-	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+-
+-	if (kvm_has_tsc_control)
+-		decache_tsc_multiplier(vmx);
+-
+-	if (enable_vpid) {
+-		/*
+-		 * There is no direct mapping between vpid02 and vpid12, the
+-		 * vpid02 is per-vCPU for L0 and reused while the value of
+-		 * vpid12 is changed w/ one invvpid during nested vmentry.
+-		 * The vpid12 is allocated by L1 for L2, so it will not
+-		 * influence global bitmap(for vpid01 and vpid02 allocation)
+-		 * even if spawn a lot of nested vCPUs.
+-		 */
+-		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
+-			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
+-				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
+-				__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+-			}
+-		} else {
+-			vmx_flush_tlb(vcpu, true);
+-		}
+-	}
+-
+-	if (enable_pml) {
+-		/*
+-		 * Conceptually we want to copy the PML address and index from
+-		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
+-		 * since we always flush the log on each vmexit, this happens
+-		 * to be equivalent to simply resetting the fields in vmcs02.
+-		 */
+-		ASSERT(vmx->pml_pg);
+-		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+-		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+-	}
+-
+-	if (nested_cpu_has_ept(vmcs12)) {
+-		if (nested_ept_init_mmu_context(vcpu)) {
+-			*entry_failure_code = ENTRY_FAIL_DEFAULT;
+-			return 1;
+-		}
+-	} else if (nested_cpu_has2(vmcs12,
+-				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+-		vmx_flush_tlb(vcpu, true);
+-	}
+-
+-	/*
+-	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
+-	 * bits which we consider mandatory enabled.
+-	 * The CR0_READ_SHADOW is what L2 should have expected to read given
+-	 * the specifications by L1; It's not enough to take
+-	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+-	 * have more bits than L1 expected.
+-	 */
+-	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+-	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+-
+-	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+-	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+-
+-	if (vmx->nested.nested_run_pending &&
+-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
+-		vcpu->arch.efer = vmcs12->guest_ia32_efer;
+-	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+-		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+-	else
+-		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+-	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+-	vmx_set_efer(vcpu, vcpu->arch.efer);
+-
+-	/*
+-	 * Guest state is invalid and unrestricted guest is disabled,
+-	 * which means L1 attempted VMEntry to L2 with invalid state.
+-	 * Fail the VMEntry.
+-	 */
+-	if (vmx->emulation_required) {
+-		*entry_failure_code = ENTRY_FAIL_DEFAULT;
+-		return 1;
+-	}
+-
+-	/* Shadow page tables on either EPT or shadow page tables. */
+-	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
+-				entry_failure_code))
+-		return 1;
+-
+-	if (!enable_ept)
+-		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+-
+-	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+-	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+-	return 0;
+-}
+-
+-static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
+-{
+-	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
+-	    nested_cpu_has_virtual_nmis(vmcs12))
+-		return -EINVAL;
+-
+-	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
+-	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+-	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_pml_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+-				vmx->nested.msrs.procbased_ctls_low,
+-				vmx->nested.msrs.procbased_ctls_high) ||
+-	    (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+-	     !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+-				 vmx->nested.msrs.secondary_ctls_low,
+-				 vmx->nested.msrs.secondary_ctls_high)) ||
+-	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+-				vmx->nested.msrs.pinbased_ctls_low,
+-				vmx->nested.msrs.pinbased_ctls_high) ||
+-	    !vmx_control_verify(vmcs12->vm_exit_controls,
+-				vmx->nested.msrs.exit_ctls_low,
+-				vmx->nested.msrs.exit_ctls_high) ||
+-	    !vmx_control_verify(vmcs12->vm_entry_controls,
+-				vmx->nested.msrs.entry_ctls_low,
+-				vmx->nested.msrs.entry_ctls_high))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_vmx_check_nmi_controls(vmcs12))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (nested_cpu_has_vmfunc(vmcs12)) {
+-		if (vmcs12->vm_function_control &
+-		    ~vmx->nested.msrs.vmfunc_controls)
+-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-		if (nested_cpu_has_eptp_switching(vmcs12)) {
+-			if (!nested_cpu_has_ept(vmcs12) ||
+-			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
+-				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-		}
+-	}
+-
+-	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
+-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
+-	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
+-	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
+-		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+-
+-	/*
+-	 * From the Intel SDM, volume 3:
+-	 * Fields relevant to VM-entry event injection must be set properly.
+-	 * These fields are the VM-entry interruption-information field, the
+-	 * VM-entry exception error code, and the VM-entry instruction length.
+-	 */
+-	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
+-		u32 intr_info = vmcs12->vm_entry_intr_info_field;
+-		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
+-		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
+-		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
+-		bool should_have_error_code;
+-		bool urg = nested_cpu_has2(vmcs12,
+-					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
+-		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
+-
+-		/* VM-entry interruption-info field: interruption type */
+-		if (intr_type == INTR_TYPE_RESERVED ||
+-		    (intr_type == INTR_TYPE_OTHER_EVENT &&
+-		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
+-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-		/* VM-entry interruption-info field: vector */
+-		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
+-		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
+-		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
+-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-		/* VM-entry interruption-info field: deliver error code */
+-		should_have_error_code =
+-			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
+-			x86_exception_has_error_code(vector);
+-		if (has_error_code != should_have_error_code)
+-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-		/* VM-entry exception error code */
+-		if (has_error_code &&
+-		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))
+-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-		/* VM-entry interruption-info field: reserved bits */
+-		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
+-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-
+-		/* VM-entry instruction length */
+-		switch (intr_type) {
+-		case INTR_TYPE_SOFT_EXCEPTION:
+-		case INTR_TYPE_SOFT_INTR:
+-		case INTR_TYPE_PRIV_SW_EXCEPTION:
+-			if ((vmcs12->vm_entry_instruction_len > 15) ||
+-			    (vmcs12->vm_entry_instruction_len == 0 &&
+-			     !nested_cpu_has_zero_length_injection(vcpu)))
+-				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+-		}
+-	}
+-
+-	return 0;
+-}
+-
+-static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
+-					  struct vmcs12 *vmcs12)
+-{
+-	int r;
+-	struct page *page;
+-	struct vmcs12 *shadow;
+-
+-	if (vmcs12->vmcs_link_pointer == -1ull)
+-		return 0;
+-
+-	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
+-		return -EINVAL;
+-
+-	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+-	if (is_error_page(page))
+-		return -EINVAL;
+-
+-	r = 0;
+-	shadow = kmap(page);
+-	if (shadow->hdr.revision_id != VMCS12_REVISION ||
+-	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
+-		r = -EINVAL;
+-	kunmap(page);
+-	kvm_release_page_clean(page);
+-	return r;
+-}
+-
+-static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+-				  u32 *exit_qual)
+-{
+-	bool ia32e;
+-
+-	*exit_qual = ENTRY_FAIL_DEFAULT;
+-
+-	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+-	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
+-		return 1;
+-
+-	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
+-		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+-		return 1;
+-	}
+-
+-	/*
+-	 * If the load IA32_EFER VM-entry control is 1, the following checks
+-	 * are performed on the field for the IA32_EFER MSR:
+-	 * - Bits reserved in the IA32_EFER MSR must be 0.
+-	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+-	 *   the IA-32e mode guest VM-exit control. It must also be identical
+-	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+-	 *   CR0.PG) is 1.
+-	 */
+-	if (to_vmx(vcpu)->nested.nested_run_pending &&
+-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
+-		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+-		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+-		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+-		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+-		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
+-			return 1;
+-	}
+-
+-	/*
+-	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+-	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
+-	 * the values of the LMA and LME bits in the field must each be that of
+-	 * the host address-space size VM-exit control.
+-	 */
+-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+-		ia32e = (vmcs12->vm_exit_controls &
+-			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+-		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+-		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+-		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
+-			return 1;
+-	}
+-
+-	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
+-		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
+-		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
+-			return 1;
+-
+-	return 0;
+-}
+-
+-/*
+- * If exit_qual is NULL, this is being called from state restore (either RSM
+- * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
+- */
+-static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	bool from_vmentry = !!exit_qual;
+-	u32 dummy_exit_qual;
+-	bool evaluate_pending_interrupts;
+-	int r = 0;
+-
+-	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+-		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
+-	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
+-		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
+-
+-	enter_guest_mode(vcpu);
+-
+-	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+-		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+-	if (kvm_mpx_supported() &&
+-		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+-		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+-
+-	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
+-	vmx_segment_cache_clear(vmx);
+-
+-	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+-		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
+-
+-	r = EXIT_REASON_INVALID_STATE;
+-	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual))
+-		goto fail;
+-
+-	if (from_vmentry) {
+-		nested_get_vmcs12_pages(vcpu);
+-
+-		r = EXIT_REASON_MSR_LOAD_FAIL;
+-		*exit_qual = nested_vmx_load_msr(vcpu,
+-	     					 vmcs12->vm_entry_msr_load_addr,
+-					      	 vmcs12->vm_entry_msr_load_count);
+-		if (*exit_qual)
+-			goto fail;
+-	} else {
+-		/*
+-		 * The MMU is not initialized to point at the right entities yet and
+-		 * "get pages" would need to read data from the guest (i.e. we will
+-		 * need to perform gpa to hpa translation). Request a call
+-		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
+-		 * have already been set at vmentry time and should not be reset.
+-		 */
+-		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
+-	}
+-
+-	/*
+-	 * If L1 had a pending IRQ/NMI until it executed
+-	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
+-	 * disallowed (e.g. interrupts disabled), L0 needs to
+-	 * evaluate if this pending event should cause an exit from L2
+-	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
+-	 * intercept EXTERNAL_INTERRUPT).
+-	 *
+-	 * Usually this would be handled by the processor noticing an
+-	 * IRQ/NMI window request, or checking RVI during evaluation of
+-	 * pending virtual interrupts.  However, this setting was done
+-	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
+-	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
+-	 */
+-	if (unlikely(evaluate_pending_interrupts))
+-		kvm_make_request(KVM_REQ_EVENT, vcpu);
+-
+-	/*
+-	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+-	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+-	 * returned as far as L1 is concerned. It will only return (and set
+-	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
+-	 */
+-	return 0;
+-
+-fail:
+-	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+-		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+-	leave_guest_mode(vcpu);
+-	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+-	return r;
+-}
+-
+-/*
+- * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+- * for running an L2 nested guest.
+- */
+-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+-{
+-	struct vmcs12 *vmcs12;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
+-	u32 exit_qual;
+-	int ret;
+-
+-	if (!nested_vmx_check_permission(vcpu))
+-		return 1;
+-
+-	if (!nested_vmx_check_vmcs12(vcpu))
+-		goto out;
+-
+-	vmcs12 = get_vmcs12(vcpu);
+-
+-	/*
+-	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
+-	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
+-	 * rather than RFLAGS.ZF, and no error number is stored to the
+-	 * VM-instruction error field.
+-	 */
+-	if (vmcs12->hdr.shadow_vmcs) {
+-		nested_vmx_failInvalid(vcpu);
+-		goto out;
+-	}
+-
+-	if (enable_shadow_vmcs)
+-		copy_shadow_to_vmcs12(vmx);
+-
+-	/*
+-	 * The nested entry process starts with enforcing various prerequisites
+-	 * on vmcs12 as required by the Intel SDM, and act appropriately when
+-	 * they fail: As the SDM explains, some conditions should cause the
+-	 * instruction to fail, while others will cause the instruction to seem
+-	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
+-	 * To speed up the normal (success) code path, we should avoid checking
+-	 * for misconfigurations which will anyway be caught by the processor
+-	 * when using the merged vmcs02.
+-	 */
+-	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
+-		nested_vmx_failValid(vcpu,
+-				     VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
+-		goto out;
+-	}
+-
+-	if (vmcs12->launch_state == launch) {
+-		nested_vmx_failValid(vcpu,
+-			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+-			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+-		goto out;
+-	}
+-
+-	ret = check_vmentry_prereqs(vcpu, vmcs12);
+-	if (ret) {
+-		nested_vmx_failValid(vcpu, ret);
+-		goto out;
+-	}
+-
+-	/*
+-	 * After this point, the trap flag no longer triggers a singlestep trap
+-	 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
+-	 * This is not 100% correct; for performance reasons, we delegate most
+-	 * of the checks on host state to the processor.  If those fail,
+-	 * the singlestep trap is missed.
+-	 */
+-	skip_emulated_instruction(vcpu);
+-
+-	ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
+-	if (ret) {
+-		nested_vmx_entry_failure(vcpu, vmcs12,
+-					 EXIT_REASON_INVALID_STATE, exit_qual);
+-		return 1;
+-	}
+-
+-	/*
+-	 * We're finally done with prerequisite checking, and can start with
+-	 * the nested entry.
+-	 */
+-
+-	vmx->nested.nested_run_pending = 1;
+-	ret = enter_vmx_non_root_mode(vcpu, &exit_qual);
+-	if (ret) {
+-		nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual);
+-		vmx->nested.nested_run_pending = 0;
+-		return 1;
+-	}
+-
+-	/* Hide L1D cache contents from the nested guest.  */
+-	vmx->vcpu.arch.l1tf_flush_l1d = true;
+-
+-	/*
+-	 * Must happen outside of enter_vmx_non_root_mode() as it will
+-	 * also be used as part of restoring nVMX state for
+-	 * snapshot restore (migration).
+-	 *
+-	 * In this flow, it is assumed that vmcs12 cache was
+-	 * trasferred as part of captured nVMX state and should
+-	 * therefore not be read from guest memory (which may not
+-	 * exist on destination host yet).
+-	 */
+-	nested_cache_shadow_vmcs12(vcpu, vmcs12);
+-
+-	/*
+-	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
+-	 * awakened by event injection or by an NMI-window VM-exit or
+-	 * by an interrupt-window VM-exit, halt the vcpu.
+-	 */
+-	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
+-	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
+-	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
+-	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
+-	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
+-		vmx->nested.nested_run_pending = 0;
+-		return kvm_vcpu_halt(vcpu);
+-	}
+-	return 1;
+-
+-out:
+-	return kvm_skip_emulated_instruction(vcpu);
+-}
+-
+-/*
+- * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+- * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+- * This function returns the new value we should put in vmcs12.guest_cr0.
+- * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+- *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+- *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+- *     didn't trap the bit, because if L1 did, so would L0).
+- *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+- *     been modified by L2, and L1 knows it. So just leave the old value of
+- *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+- *     isn't relevant, because if L0 traps this bit it can set it to anything.
+- *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+- *     changed these bits, and therefore they need to be updated, but L0
+- *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+- *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+- */
+-static inline unsigned long
+-vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+-{
+-	return
+-	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+-	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+-	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+-			vcpu->arch.cr0_guest_owned_bits));
+-}
+-
+-static inline unsigned long
+-vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+-{
+-	return
+-	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+-	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+-	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+-			vcpu->arch.cr4_guest_owned_bits));
+-}
+-
+-static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+-				       struct vmcs12 *vmcs12)
+-{
+-	u32 idt_vectoring;
+-	unsigned int nr;
+-
+-	if (vcpu->arch.exception.injected) {
+-		nr = vcpu->arch.exception.nr;
+-		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+-
+-		if (kvm_exception_is_soft(nr)) {
+-			vmcs12->vm_exit_instruction_len =
+-				vcpu->arch.event_exit_inst_len;
+-			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+-		} else
+-			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+-
+-		if (vcpu->arch.exception.has_error_code) {
+-			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+-			vmcs12->idt_vectoring_error_code =
+-				vcpu->arch.exception.error_code;
+-		}
+-
+-		vmcs12->idt_vectoring_info_field = idt_vectoring;
+-	} else if (vcpu->arch.nmi_injected) {
+-		vmcs12->idt_vectoring_info_field =
+-			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+-	} else if (vcpu->arch.interrupt.injected) {
+-		nr = vcpu->arch.interrupt.nr;
+-		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+-
+-		if (vcpu->arch.interrupt.soft) {
+-			idt_vectoring |= INTR_TYPE_SOFT_INTR;
+-			vmcs12->vm_entry_instruction_len =
+-				vcpu->arch.event_exit_inst_len;
+-		} else
+-			idt_vectoring |= INTR_TYPE_EXT_INTR;
+-
+-		vmcs12->idt_vectoring_info_field = idt_vectoring;
+-	}
+-}
+-
+-static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	unsigned long exit_qual;
+-	bool block_nested_events =
+-	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
+-
+-	if (vcpu->arch.exception.pending &&
+-		nested_vmx_check_exception(vcpu, &exit_qual)) {
+-		if (block_nested_events)
+-			return -EBUSY;
+-		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+-		return 0;
+-	}
+-
+-	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+-	    vmx->nested.preemption_timer_expired) {
+-		if (block_nested_events)
+-			return -EBUSY;
+-		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+-		return 0;
+-	}
+-
+-	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+-		if (block_nested_events)
+-			return -EBUSY;
+-		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+-				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
+-				  INTR_INFO_VALID_MASK, 0);
+-		/*
+-		 * The NMI-triggered VM exit counts as injection:
+-		 * clear this one and block further NMIs.
+-		 */
+-		vcpu->arch.nmi_pending = 0;
+-		vmx_set_nmi_mask(vcpu, true);
+-		return 0;
+-	}
+-
+-	if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
+-		if (block_nested_events)
+-			return -EBUSY;
+-		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+-		return 0;
+-	}
+-
+-	vmx_complete_nested_posted_interrupt(vcpu);
+-	return 0;
+-}
+-
+-static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
+-{
+-	to_vmx(vcpu)->req_immediate_exit = true;
+-}
+-
+-static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+-{
+-	ktime_t remaining =
+-		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+-	u64 value;
+-
+-	if (ktime_to_ns(remaining) <= 0)
+-		return 0;
+-
+-	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+-	do_div(value, 1000000);
+-	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+-}
+-
+-/*
+- * Update the guest state fields of vmcs12 to reflect changes that
+- * occurred while L2 was running. (The "IA-32e mode guest" bit of the
+- * VM-entry controls is also updated, since this is really a guest
+- * state bit.)
+- */
+-static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+-{
+-	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+-	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+-
+-	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+-	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+-	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+-
+-	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+-	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+-	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+-	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+-	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+-	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+-	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+-	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+-	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+-	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+-	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+-	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+-	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+-	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+-	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+-	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+-	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+-	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+-	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+-	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+-	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+-	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+-	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+-	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+-	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+-	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+-	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+-	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+-	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+-	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+-	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+-	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+-	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+-	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+-	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+-	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+-
+-	vmcs12->guest_interruptibility_info =
+-		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+-	vmcs12->guest_pending_dbg_exceptions =
+-		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+-	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+-		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+-	else
+-		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+-
+-	if (nested_cpu_has_preemption_timer(vmcs12)) {
+-		if (vmcs12->vm_exit_controls &
+-		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+-			vmcs12->vmx_preemption_timer_value =
+-				vmx_get_preemption_timer_value(vcpu);
+-		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+-	}
+-
+-	/*
+-	 * In some cases (usually, nested EPT), L2 is allowed to change its
+-	 * own CR3 without exiting. If it has changed it, we must keep it.
+-	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+-	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+-	 *
+-	 * Additionally, restore L2's PDPTR to vmcs12.
+-	 */
+-	if (enable_ept) {
+-		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
+-		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+-		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+-		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+-		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+-	}
+-
+-	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
+-
+-	if (nested_cpu_has_vid(vmcs12))
+-		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+-
+-	vmcs12->vm_entry_controls =
+-		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+-		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+-
+-	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+-		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+-		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+-	}
+-
+-	/* TODO: These cannot have changed unless we have MSR bitmaps and
+-	 * the relevant bit asks not to trap the change */
+-	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+-		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+-	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+-		vmcs12->guest_ia32_efer = vcpu->arch.efer;
+-	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+-	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+-	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+-	if (kvm_mpx_supported())
+-		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+-}
+-
+-/*
+- * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+- * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+- * and this function updates it to reflect the changes to the guest state while
+- * L2 was running (and perhaps made some exits which were handled directly by L0
+- * without going back to L1), and to reflect the exit reason.
+- * Note that we do not have to copy here all VMCS fields, just those that
+- * could have changed by the L2 guest or the exit - i.e., the guest-state and
+- * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+- * which already writes to vmcs12 directly.
+- */
+-static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+-			   u32 exit_reason, u32 exit_intr_info,
+-			   unsigned long exit_qualification)
+-{
+-	/* update guest state fields: */
+-	sync_vmcs12(vcpu, vmcs12);
+-
+-	/* update exit information fields: */
+-
+-	vmcs12->vm_exit_reason = exit_reason;
+-	vmcs12->exit_qualification = exit_qualification;
+-	vmcs12->vm_exit_intr_info = exit_intr_info;
+-
+-	vmcs12->idt_vectoring_info_field = 0;
+-	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+-	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+-
+-	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+-		vmcs12->launch_state = 1;
+-
+-		/* vm_entry_intr_info_field is cleared on exit. Emulate this
+-		 * instead of reading the real value. */
+-		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+-
+-		/*
+-		 * Transfer the event that L0 or L1 may wanted to inject into
+-		 * L2 to IDT_VECTORING_INFO_FIELD.
+-		 */
+-		vmcs12_save_pending_event(vcpu, vmcs12);
+-	}
+-}
+-
+-/*
+- * A part of what we need to when the nested L2 guest exits and we want to
+- * run its L1 parent, is to reset L1's guest state to the host state specified
+- * in vmcs12.
+- * This function is to be called not only on normal nested exit, but also on
+- * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+- * Failures During or After Loading Guest State").
+- * This function should be called when the active VMCS is L1's (vmcs01).
+- */
+-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+-				   struct vmcs12 *vmcs12)
+-{
+-	struct kvm_segment seg;
+-	u32 entry_failure_code;
+-
+-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+-		vcpu->arch.efer = vmcs12->host_ia32_efer;
+-	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+-		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+-	else
+-		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+-	vmx_set_efer(vcpu, vcpu->arch.efer);
+-
+-	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+-	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+-	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+-	/*
+-	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+-	 * actually changed, because vmx_set_cr0 refers to efer set above.
+-	 *
+-	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
+-	 * (KVM doesn't change it);
+-	 */
+-	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+-	vmx_set_cr0(vcpu, vmcs12->host_cr0);
+-
+-	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
+-	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+-	vmx_set_cr4(vcpu, vmcs12->host_cr4);
+-
+-	nested_ept_uninit_mmu_context(vcpu);
+-
+-	/*
+-	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
+-	 * couldn't have changed.
+-	 */
+-	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
+-		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
+-
+-	if (!enable_ept)
+-		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+-
+-	/*
+-	 * If vmcs01 don't use VPID, CPU flushes TLB on every
+-	 * VMEntry/VMExit. Thus, no need to flush TLB.
+-	 *
+-	 * If vmcs12 uses VPID, TLB entries populated by L2 are
+-	 * tagged with vmx->nested.vpid02 while L1 entries are tagged
+-	 * with vmx->vpid. Thus, no need to flush TLB.
+-	 *
+-	 * Therefore, flush TLB only in case vmcs01 uses VPID and
+-	 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
+-	 * are both tagged with vmx->vpid.
+-	 */
+-	if (enable_vpid &&
+-	    !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
+-		vmx_flush_tlb(vcpu, true);
+-	}
+-
+-	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+-	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+-	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+-	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+-	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+-	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
+-	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
+-
+-	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
+-	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+-		vmcs_write64(GUEST_BNDCFGS, 0);
+-
+-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+-		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+-		vcpu->arch.pat = vmcs12->host_ia32_pat;
+-	}
+-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+-		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+-			vmcs12->host_ia32_perf_global_ctrl);
+-
+-	/* Set L1 segment info according to Intel SDM
+-	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
+-	seg = (struct kvm_segment) {
+-		.base = 0,
+-		.limit = 0xFFFFFFFF,
+-		.selector = vmcs12->host_cs_selector,
+-		.type = 11,
+-		.present = 1,
+-		.s = 1,
+-		.g = 1
+-	};
+-	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+-		seg.l = 1;
+-	else
+-		seg.db = 1;
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+-	seg = (struct kvm_segment) {
+-		.base = 0,
+-		.limit = 0xFFFFFFFF,
+-		.type = 3,
+-		.present = 1,
+-		.s = 1,
+-		.db = 1,
+-		.g = 1
+-	};
+-	seg.selector = vmcs12->host_ds_selector;
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+-	seg.selector = vmcs12->host_es_selector;
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+-	seg.selector = vmcs12->host_ss_selector;
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+-	seg.selector = vmcs12->host_fs_selector;
+-	seg.base = vmcs12->host_fs_base;
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+-	seg.selector = vmcs12->host_gs_selector;
+-	seg.base = vmcs12->host_gs_base;
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+-	seg = (struct kvm_segment) {
+-		.base = vmcs12->host_tr_base,
+-		.limit = 0x67,
+-		.selector = vmcs12->host_tr_selector,
+-		.type = 11,
+-		.present = 1
+-	};
+-	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+-
+-	kvm_set_dr(vcpu, 7, 0x400);
+-	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+-
+-	if (cpu_has_vmx_msr_bitmap())
+-		vmx_update_msr_bitmap(vcpu);
+-
+-	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+-				vmcs12->vm_exit_msr_load_count))
+-		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+-}
+-
+-static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
+-{
+-	struct shared_msr_entry *efer_msr;
+-	unsigned int i;
+-
+-	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
+-		return vmcs_read64(GUEST_IA32_EFER);
+-
+-	if (cpu_has_load_ia32_efer)
+-		return host_efer;
+-
+-	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
+-		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
+-			return vmx->msr_autoload.guest.val[i].value;
+-	}
+-
+-	efer_msr = find_msr_entry(vmx, MSR_EFER);
+-	if (efer_msr)
+-		return efer_msr->data;
+-
+-	return host_efer;
+-}
+-
+-static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmx_msr_entry g, h;
+-	struct msr_data msr;
+-	gpa_t gpa;
+-	u32 i, j;
+-
+-	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
+-
+-	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+-		/*
+-		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
+-		 * as vmcs01.GUEST_DR7 contains a userspace defined value
+-		 * and vcpu->arch.dr7 is not squirreled away before the
+-		 * nested VMENTER (not worth adding a variable in nested_vmx).
+-		 */
+-		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+-			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+-		else
+-			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
+-	}
+-
+-	/*
+-	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
+-	 * handle a variety of side effects to KVM's software model.
+-	 */
+-	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
+-
+-	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+-	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
+-
+-	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+-	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
+-
+-	nested_ept_uninit_mmu_context(vcpu);
+-	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+-	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+-
+-	/*
+-	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
+-	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
+-	 * VMFail, like everything else we just need to ensure our
+-	 * software model is up-to-date.
+-	 */
+-	ept_save_pdptrs(vcpu);
+-
+-	kvm_mmu_reset_context(vcpu);
+-
+-	if (cpu_has_vmx_msr_bitmap())
+-		vmx_update_msr_bitmap(vcpu);
+-
+-	/*
+-	 * This nasty bit of open coding is a compromise between blindly
+-	 * loading L1's MSRs using the exit load lists (incorrect emulation
+-	 * of VMFail), leaving the nested VM's MSRs in the software model
+-	 * (incorrect behavior) and snapshotting the modified MSRs (too
+-	 * expensive since the lists are unbound by hardware).  For each
+-	 * MSR that was (prematurely) loaded from the nested VMEntry load
+-	 * list, reload it from the exit load list if it exists and differs
+-	 * from the guest value.  The intent is to stuff host state as
+-	 * silently as possible, not to fully process the exit load list.
+-	 */
+-	msr.host_initiated = false;
+-	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
+-		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
+-		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
+-			pr_debug_ratelimited(
+-				"%s read MSR index failed (%u, 0x%08llx)\n",
+-				__func__, i, gpa);
+-			goto vmabort;
+-		}
+-
+-		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
+-			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
+-			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
+-				pr_debug_ratelimited(
+-					"%s read MSR failed (%u, 0x%08llx)\n",
+-					__func__, j, gpa);
+-				goto vmabort;
+-			}
+-			if (h.index != g.index)
+-				continue;
+-			if (h.value == g.value)
+-				break;
+-
+-			if (nested_vmx_load_msr_check(vcpu, &h)) {
+-				pr_debug_ratelimited(
+-					"%s check failed (%u, 0x%x, 0x%x)\n",
+-					__func__, j, h.index, h.reserved);
+-				goto vmabort;
+-			}
+-
+-			msr.index = h.index;
+-			msr.data = h.value;
+-			if (kvm_set_msr(vcpu, &msr)) {
+-				pr_debug_ratelimited(
+-					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
+-					__func__, j, h.index, h.value);
+-				goto vmabort;
+-			}
+-		}
+-	}
+-
+-	return;
+-
+-vmabort:
+-	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+-}
+-
+-/*
+- * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+- * and modify vmcs12 to make it see what it would expect to see there if
+- * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+- */
+-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+-			      u32 exit_intr_info,
+-			      unsigned long exit_qualification)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-
+-	/* trying to cancel vmlaunch/vmresume is a bug */
+-	WARN_ON_ONCE(vmx->nested.nested_run_pending);
+-
+-	/*
+-	 * The only expected VM-instruction error is "VM entry with
+-	 * invalid control field(s)." Anything else indicates a
+-	 * problem with L0.
+-	 */
+-	WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
+-				   VMXERR_ENTRY_INVALID_CONTROL_FIELD));
+-
+-	leave_guest_mode(vcpu);
+-
+-	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+-		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+-
+-	if (likely(!vmx->fail)) {
+-		if (exit_reason == -1)
+-			sync_vmcs12(vcpu, vmcs12);
+-		else
+-			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+-				       exit_qualification);
+-
+-		/*
+-		 * Must happen outside of sync_vmcs12() as it will
+-		 * also be used to capture vmcs12 cache as part of
+-		 * capturing nVMX state for snapshot (migration).
+-		 *
+-		 * Otherwise, this flush will dirty guest memory at a
+-		 * point it is already assumed by user-space to be
+-		 * immutable.
+-		 */
+-		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
+-
+-		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
+-					 vmcs12->vm_exit_msr_store_count))
+-			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+-	}
+-
+-	/*
+-	 * Drop events/exceptions that were queued for re-injection to L2
+-	 * (picked up via vmx_complete_interrupts()), as well as exceptions
+-	 * that were pending for L2.  Note, this must NOT be hoisted above
+-	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
+-	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
+-	 */
+-	vcpu->arch.nmi_injected = false;
+-	kvm_clear_exception_queue(vcpu);
+-	kvm_clear_interrupt_queue(vcpu);
+-
+-	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+-	vm_entry_controls_reset_shadow(vmx);
+-	vm_exit_controls_reset_shadow(vmx);
+-	vmx_segment_cache_clear(vmx);
+-
+-	/* Update any VMCS fields that might have changed while L2 ran */
+-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+-	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+-
+-	if (kvm_has_tsc_control)
+-		decache_tsc_multiplier(vmx);
+-
+-	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
+-		vmx->nested.change_vmcs01_virtual_apic_mode = false;
+-		vmx_set_virtual_apic_mode(vcpu);
+-	} else if (!nested_cpu_has_ept(vmcs12) &&
+-		   nested_cpu_has2(vmcs12,
+-				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+-		vmx_flush_tlb(vcpu, true);
+-	}
+-
+-	/* This is needed for same reason as it was needed in prepare_vmcs02 */
+-	vmx->host_rsp = 0;
+-
+-	/* Unpin physical memory we referred to in vmcs02 */
+-	if (vmx->nested.apic_access_page) {
+-		kvm_release_page_dirty(vmx->nested.apic_access_page);
+-		vmx->nested.apic_access_page = NULL;
+-	}
+-	if (vmx->nested.virtual_apic_page) {
+-		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+-		vmx->nested.virtual_apic_page = NULL;
+-	}
+-	if (vmx->nested.pi_desc_page) {
+-		kunmap(vmx->nested.pi_desc_page);
+-		kvm_release_page_dirty(vmx->nested.pi_desc_page);
+-		vmx->nested.pi_desc_page = NULL;
+-		vmx->nested.pi_desc = NULL;
+-	}
+-
+-	/*
+-	 * We are now running in L2, mmu_notifier will force to reload the
+-	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+-	 */
+-	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+-
+-	if (enable_shadow_vmcs && exit_reason != -1)
+-		vmx->nested.sync_shadow_vmcs = true;
+-
+-	/* in case we halted in L2 */
+-	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+-
+-	if (likely(!vmx->fail)) {
+-		if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
+-		    nested_exit_intr_ack_set(vcpu)) {
+-			int irq = kvm_cpu_get_interrupt(vcpu);
+-			WARN_ON(irq < 0);
+-			vmcs12->vm_exit_intr_info = irq |
+-				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+-		}
+-
+-		if (exit_reason != -1)
+-			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+-						       vmcs12->exit_qualification,
+-						       vmcs12->idt_vectoring_info_field,
+-						       vmcs12->vm_exit_intr_info,
+-						       vmcs12->vm_exit_intr_error_code,
+-						       KVM_ISA_VMX);
+-
+-		load_vmcs12_host_state(vcpu, vmcs12);
+-
+-		return;
+-	}
+-	
+-	/*
+-	 * After an early L2 VM-entry failure, we're now back
+-	 * in L1 which thinks it just finished a VMLAUNCH or
+-	 * VMRESUME instruction, so we need to set the failure
+-	 * flag and the VM-instruction error field of the VMCS
+-	 * accordingly.
+-	 */
+-	nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+-
+-	/*
+-	 * Restore L1's host state to KVM's software model.  We're here
+-	 * because a consistency check was caught by hardware, which
+-	 * means some amount of guest state has been propagated to KVM's
+-	 * model and needs to be unwound to the host's state.
+-	 */
+-	nested_vmx_restore_host_state(vcpu);
+-
+-	/*
+-	 * The emulated instruction was already skipped in
+-	 * nested_vmx_run, but the updated RIP was never
+-	 * written back to the vmcs01.
+-	 */
+-	skip_emulated_instruction(vcpu);
+-	vmx->fail = 0;
+-}
+-
+-/*
+- * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+- */
+-static void vmx_leave_nested(struct kvm_vcpu *vcpu)
+-{
+-	if (is_guest_mode(vcpu)) {
+-		to_vmx(vcpu)->nested.nested_run_pending = 0;
+-		nested_vmx_vmexit(vcpu, -1, 0, 0);
+-	}
+-	free_nested(to_vmx(vcpu));
+-}
+-
+-/*
+- * L1's failure to enter L2 is a subset of a normal exit, as explained in
+- * 23.7 "VM-entry failures during or after loading guest state" (this also
+- * lists the acceptable exit-reason and exit-qualification parameters).
+- * It should only be called before L2 actually succeeded to run, and when
+- * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
+- */
+-static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+-			struct vmcs12 *vmcs12,
+-			u32 reason, unsigned long qualification)
+-{
+-	load_vmcs12_host_state(vcpu, vmcs12);
+-	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+-	vmcs12->exit_qualification = qualification;
+-	nested_vmx_succeed(vcpu);
+-	if (enable_shadow_vmcs)
+-		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
+-}
+-
+-static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
+-				  struct x86_instruction_info *info)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	unsigned short port;
+-	bool intercept;
+-	int size;
+-
+-	if (info->intercept == x86_intercept_in ||
+-	    info->intercept == x86_intercept_ins) {
+-		port = info->src_val;
+-		size = info->dst_bytes;
+-	} else {
+-		port = info->dst_val;
+-		size = info->src_bytes;
+-	}
+-
+-	/*
+-	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
+-	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
+-	 * control.
+-	 *
+-	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
+-	 */
+-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+-		intercept = nested_cpu_has(vmcs12,
+-					   CPU_BASED_UNCOND_IO_EXITING);
+-	else
+-		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
+-
+-	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
+-	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
+-}
+-
+-static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+-			       struct x86_instruction_info *info,
+-			       enum x86_intercept_stage stage)
+-{
+-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+-	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+-
+-	switch (info->intercept) {
+-	/*
+-	 * RDPID causes #UD if disabled through secondary execution controls.
+-	 * Because it is marked as EmulateOnUD, we need to intercept it here.
+-	 */
+-	case x86_intercept_rdtscp:
+-		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
+-			ctxt->exception.vector = UD_VECTOR;
+-			ctxt->exception.error_code_valid = false;
+-			return X86EMUL_PROPAGATE_FAULT;
+-		}
+-		break;
+-
+-	case x86_intercept_in:
+-	case x86_intercept_ins:
+-	case x86_intercept_out:
+-	case x86_intercept_outs:
+-		return vmx_check_intercept_io(vcpu, info);
+-
+-	case x86_intercept_lgdt:
+-	case x86_intercept_lidt:
+-	case x86_intercept_lldt:
+-	case x86_intercept_ltr:
+-	case x86_intercept_sgdt:
+-	case x86_intercept_sidt:
+-	case x86_intercept_sldt:
+-	case x86_intercept_str:
+-		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
+-			return X86EMUL_CONTINUE;
+-
+-		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
+-		break;
+-
+-	/* TODO: check more intercepts... */
+-	default:
+-		break;
+-	}
+-
+-	return X86EMUL_UNHANDLEABLE;
+-}
+-
+-#ifdef CONFIG_X86_64
+-/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
+-static inline int u64_shl_div_u64(u64 a, unsigned int shift,
+-				  u64 divisor, u64 *result)
+-{
+-	u64 low = a << shift, high = a >> (64 - shift);
+-
+-	/* To avoid the overflow on divq */
+-	if (high >= divisor)
+-		return 1;
+-
+-	/* Low hold the result, high hold rem which is discarded */
+-	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
+-	    "rm" (divisor), "0" (low), "1" (high));
+-	*result = low;
+-
+-	return 0;
+-}
+-
+-static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
+-{
+-	struct vcpu_vmx *vmx;
+-	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
+-
+-	if (kvm_mwait_in_guest(vcpu->kvm))
+-		return -EOPNOTSUPP;
+-
+-	vmx = to_vmx(vcpu);
+-	tscl = rdtsc();
+-	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
+-	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
+-	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
+-
+-	if (delta_tsc > lapic_timer_advance_cycles)
+-		delta_tsc -= lapic_timer_advance_cycles;
+-	else
+-		delta_tsc = 0;
+-
+-	/* Convert to host delta tsc if tsc scaling is enabled */
+-	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
+-			u64_shl_div_u64(delta_tsc,
+-				kvm_tsc_scaling_ratio_frac_bits,
+-				vcpu->arch.tsc_scaling_ratio,
+-				&delta_tsc))
+-		return -ERANGE;
+-
+-	/*
+-	 * If the delta tsc can't fit in the 32 bit after the multi shift,
+-	 * we can't use the preemption timer.
+-	 * It's possible that it fits on later vmentries, but checking
+-	 * on every vmentry is costly so we just use an hrtimer.
+-	 */
+-	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
+-		return -ERANGE;
+-
+-	vmx->hv_deadline_tsc = tscl + delta_tsc;
+-	return delta_tsc == 0;
+-}
+-
+-static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
+-{
+-	to_vmx(vcpu)->hv_deadline_tsc = -1;
+-}
+-#endif
+-
+-static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+-{
+-	if (!kvm_pause_in_guest(vcpu->kvm))
+-		shrink_ple_window(vcpu);
+-}
+-
+-static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+-				     struct kvm_memory_slot *slot)
+-{
+-	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+-	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+-}
+-
+-static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+-				       struct kvm_memory_slot *slot)
+-{
+-	kvm_mmu_slot_set_dirty(kvm, slot);
+-}
+-
+-static void vmx_flush_log_dirty(struct kvm *kvm)
+-{
+-	kvm_flush_pml_buffers(kvm);
+-}
+-
+-static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
+-{
+-	struct vmcs12 *vmcs12;
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct page *page = NULL;
+-	u64 *pml_address;
+-
+-	if (is_guest_mode(vcpu)) {
+-		WARN_ON_ONCE(vmx->nested.pml_full);
+-
+-		/*
+-		 * Check if PML is enabled for the nested guest.
+-		 * Whether eptp bit 6 is set is already checked
+-		 * as part of A/D emulation.
+-		 */
+-		vmcs12 = get_vmcs12(vcpu);
+-		if (!nested_cpu_has_pml(vmcs12))
+-			return 0;
+-
+-		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
+-			vmx->nested.pml_full = true;
+-			return 1;
+-		}
+-
+-		gpa &= ~0xFFFull;
+-
+-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
+-		if (is_error_page(page))
+-			return 0;
+-
+-		pml_address = kmap(page);
+-		pml_address[vmcs12->guest_pml_index--] = gpa;
+-		kunmap(page);
+-		kvm_release_page_clean(page);
+-	}
+-
+-	return 0;
+-}
+-
+-static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+-					   struct kvm_memory_slot *memslot,
+-					   gfn_t offset, unsigned long mask)
+-{
+-	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+-}
+-
+-static void __pi_post_block(struct kvm_vcpu *vcpu)
+-{
+-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+-	struct pi_desc old, new;
+-	unsigned int dest;
+-
+-	do {
+-		old.control = new.control = pi_desc->control;
+-		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
+-		     "Wakeup handler not enabled while the VCPU is blocked\n");
+-
+-		dest = cpu_physical_id(vcpu->cpu);
+-
+-		if (x2apic_enabled())
+-			new.ndst = dest;
+-		else
+-			new.ndst = (dest << 8) & 0xFF00;
+-
+-		/* set 'NV' to 'notification vector' */
+-		new.nv = POSTED_INTR_VECTOR;
+-	} while (cmpxchg64(&pi_desc->control, old.control,
+-			   new.control) != old.control);
+-
+-	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
+-		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+-		list_del(&vcpu->blocked_vcpu_list);
+-		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+-		vcpu->pre_pcpu = -1;
+-	}
+-}
+-
+-/*
+- * This routine does the following things for vCPU which is going
+- * to be blocked if VT-d PI is enabled.
+- * - Store the vCPU to the wakeup list, so when interrupts happen
+- *   we can find the right vCPU to wake up.
+- * - Change the Posted-interrupt descriptor as below:
+- *      'NDST' <-- vcpu->pre_pcpu
+- *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
+- * - If 'ON' is set during this process, which means at least one
+- *   interrupt is posted for this vCPU, we cannot block it, in
+- *   this case, return 1, otherwise, return 0.
+- *
+- */
+-static int pi_pre_block(struct kvm_vcpu *vcpu)
+-{
+-	unsigned int dest;
+-	struct pi_desc old, new;
+-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+-
+-	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+-		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
+-		!kvm_vcpu_apicv_active(vcpu))
+-		return 0;
+-
+-	WARN_ON(irqs_disabled());
+-	local_irq_disable();
+-	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
+-		vcpu->pre_pcpu = vcpu->cpu;
+-		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+-		list_add_tail(&vcpu->blocked_vcpu_list,
+-			      &per_cpu(blocked_vcpu_on_cpu,
+-				       vcpu->pre_pcpu));
+-		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+-	}
+-
+-	do {
+-		old.control = new.control = pi_desc->control;
+-
+-		WARN((pi_desc->sn == 1),
+-		     "Warning: SN field of posted-interrupts "
+-		     "is set before blocking\n");
+-
+-		/*
+-		 * Since vCPU can be preempted during this process,
+-		 * vcpu->cpu could be different with pre_pcpu, we
+-		 * need to set pre_pcpu as the destination of wakeup
+-		 * notification event, then we can find the right vCPU
+-		 * to wakeup in wakeup handler if interrupts happen
+-		 * when the vCPU is in blocked state.
+-		 */
+-		dest = cpu_physical_id(vcpu->pre_pcpu);
+-
+-		if (x2apic_enabled())
+-			new.ndst = dest;
+-		else
+-			new.ndst = (dest << 8) & 0xFF00;
+-
+-		/* set 'NV' to 'wakeup vector' */
+-		new.nv = POSTED_INTR_WAKEUP_VECTOR;
+-	} while (cmpxchg64(&pi_desc->control, old.control,
+-			   new.control) != old.control);
+-
+-	/* We should not block the vCPU if an interrupt is posted for it.  */
+-	if (pi_test_on(pi_desc) == 1)
+-		__pi_post_block(vcpu);
+-
+-	local_irq_enable();
+-	return (vcpu->pre_pcpu == -1);
+-}
+-
+-static int vmx_pre_block(struct kvm_vcpu *vcpu)
+-{
+-	if (pi_pre_block(vcpu))
+-		return 1;
+-
+-	if (kvm_lapic_hv_timer_in_use(vcpu))
+-		kvm_lapic_switch_to_sw_timer(vcpu);
+-
+-	return 0;
+-}
+-
+-static void pi_post_block(struct kvm_vcpu *vcpu)
+-{
+-	if (vcpu->pre_pcpu == -1)
+-		return;
+-
+-	WARN_ON(irqs_disabled());
+-	local_irq_disable();
+-	__pi_post_block(vcpu);
+-	local_irq_enable();
+-}
+-
+-static void vmx_post_block(struct kvm_vcpu *vcpu)
+-{
+-	if (kvm_x86_ops->set_hv_timer)
+-		kvm_lapic_switch_to_hv_timer(vcpu);
+-
+-	pi_post_block(vcpu);
+-}
+-
+-/*
+- * vmx_update_pi_irte - set IRTE for Posted-Interrupts
+- *
+- * @kvm: kvm
+- * @host_irq: host irq of the interrupt
+- * @guest_irq: gsi of the interrupt
+- * @set: set or unset PI
+- * returns 0 on success, < 0 on failure
+- */
+-static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+-			      uint32_t guest_irq, bool set)
+-{
+-	struct kvm_kernel_irq_routing_entry *e;
+-	struct kvm_irq_routing_table *irq_rt;
+-	struct kvm_lapic_irq irq;
+-	struct kvm_vcpu *vcpu;
+-	struct vcpu_data vcpu_info;
+-	int idx, ret = 0;
+-
+-	if (!kvm_arch_has_assigned_device(kvm) ||
+-		!irq_remapping_cap(IRQ_POSTING_CAP) ||
+-		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
+-		return 0;
+-
+-	idx = srcu_read_lock(&kvm->irq_srcu);
+-	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
+-	if (guest_irq >= irq_rt->nr_rt_entries ||
+-	    hlist_empty(&irq_rt->map[guest_irq])) {
+-		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
+-			     guest_irq, irq_rt->nr_rt_entries);
+-		goto out;
+-	}
+-
+-	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
+-		if (e->type != KVM_IRQ_ROUTING_MSI)
+-			continue;
+-		/*
+-		 * VT-d PI cannot support posting multicast/broadcast
+-		 * interrupts to a vCPU, we still use interrupt remapping
+-		 * for these kind of interrupts.
+-		 *
+-		 * For lowest-priority interrupts, we only support
+-		 * those with single CPU as the destination, e.g. user
+-		 * configures the interrupts via /proc/irq or uses
+-		 * irqbalance to make the interrupts single-CPU.
+-		 *
+-		 * We will support full lowest-priority interrupt later.
+-		 */
+-
+-		kvm_set_msi_irq(kvm, e, &irq);
+-		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
+-			/*
+-			 * Make sure the IRTE is in remapped mode if
+-			 * we don't handle it in posted mode.
+-			 */
+-			ret = irq_set_vcpu_affinity(host_irq, NULL);
+-			if (ret < 0) {
+-				printk(KERN_INFO
+-				   "failed to back to remapped mode, irq: %u\n",
+-				   host_irq);
+-				goto out;
+-			}
+-
+-			continue;
+-		}
+-
+-		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
+-		vcpu_info.vector = irq.vector;
+-
+-		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
+-				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
+-
+-		if (set)
+-			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
+-		else
+-			ret = irq_set_vcpu_affinity(host_irq, NULL);
+-
+-		if (ret < 0) {
+-			printk(KERN_INFO "%s: failed to update PI IRTE\n",
+-					__func__);
+-			goto out;
+-		}
+-	}
+-
+-	ret = 0;
+-out:
+-	srcu_read_unlock(&kvm->irq_srcu, idx);
+-	return ret;
+-}
+-
+-static void vmx_setup_mce(struct kvm_vcpu *vcpu)
+-{
+-	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
+-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+-			FEATURE_CONTROL_LMCE;
+-	else
+-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+-			~FEATURE_CONTROL_LMCE;
+-}
+-
+-static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
+-{
+-	/* we need a nested vmexit to enter SMM, postpone if run is pending */
+-	if (to_vmx(vcpu)->nested.nested_run_pending)
+-		return 0;
+-	return 1;
+-}
+-
+-static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-
+-	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
+-	if (vmx->nested.smm.guest_mode)
+-		nested_vmx_vmexit(vcpu, -1, 0, 0);
+-
+-	vmx->nested.smm.vmxon = vmx->nested.vmxon;
+-	vmx->nested.vmxon = false;
+-	vmx_clear_hlt(vcpu);
+-	return 0;
+-}
+-
+-static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	int ret;
+-
+-	if (vmx->nested.smm.vmxon) {
+-		vmx->nested.vmxon = true;
+-		vmx->nested.smm.vmxon = false;
+-	}
+-
+-	if (vmx->nested.smm.guest_mode) {
+-		vcpu->arch.hflags &= ~HF_SMM_MASK;
+-		ret = enter_vmx_non_root_mode(vcpu, NULL);
+-		vcpu->arch.hflags |= HF_SMM_MASK;
+-		if (ret)
+-			return ret;
+-
+-		vmx->nested.smm.guest_mode = false;
+-	}
+-	return 0;
+-}
+-
+-static int enable_smi_window(struct kvm_vcpu *vcpu)
+-{
+-	return 0;
+-}
+-
+-static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
+-				struct kvm_nested_state __user *user_kvm_nested_state,
+-				u32 user_data_size)
+-{
+-	struct vcpu_vmx *vmx;
+-	struct vmcs12 *vmcs12;
+-	struct kvm_nested_state kvm_state = {
+-		.flags = 0,
+-		.format = 0,
+-		.size = sizeof(kvm_state),
+-		.vmx.vmxon_pa = -1ull,
+-		.vmx.vmcs_pa = -1ull,
+-	};
+-
+-	if (!vcpu)
+-		return kvm_state.size + 2 * VMCS12_SIZE;
+-
+-	vmx = to_vmx(vcpu);
+-	vmcs12 = get_vmcs12(vcpu);
+-	if (nested_vmx_allowed(vcpu) &&
+-	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
+-		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
+-		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
+-
+-		if (vmx->nested.current_vmptr != -1ull) {
+-			kvm_state.size += VMCS12_SIZE;
+-
+-			if (is_guest_mode(vcpu) &&
+-			    nested_cpu_has_shadow_vmcs(vmcs12) &&
+-			    vmcs12->vmcs_link_pointer != -1ull)
+-				kvm_state.size += VMCS12_SIZE;
+-		}
+-
+-		if (vmx->nested.smm.vmxon)
+-			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
+-
+-		if (vmx->nested.smm.guest_mode)
+-			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
+-
+-		if (is_guest_mode(vcpu)) {
+-			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
+-
+-			if (vmx->nested.nested_run_pending)
+-				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
+-		}
+-	}
+-
+-	if (user_data_size < kvm_state.size)
+-		goto out;
+-
+-	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
+-		return -EFAULT;
+-
+-	if (vmx->nested.current_vmptr == -1ull)
+-		goto out;
+-
+-	/*
+-	 * When running L2, the authoritative vmcs12 state is in the
+-	 * vmcs02. When running L1, the authoritative vmcs12 state is
+-	 * in the shadow vmcs linked to vmcs01, unless
+-	 * sync_shadow_vmcs is set, in which case, the authoritative
+-	 * vmcs12 state is in the vmcs12 already.
+-	 */
+-	if (is_guest_mode(vcpu))
+-		sync_vmcs12(vcpu, vmcs12);
+-	else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs)
+-		copy_shadow_to_vmcs12(vmx);
+-
+-	/*
+-	 * Copy over the full allocated size of vmcs12 rather than just the size
+-	 * of the struct.
+-	 */
+-	if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
+-		return -EFAULT;
+-
+-	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+-	    vmcs12->vmcs_link_pointer != -1ull) {
+-		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
+-				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
+-			return -EFAULT;
+-	}
+-
+-out:
+-	return kvm_state.size;
+-}
+-
+-static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
+-				struct kvm_nested_state __user *user_kvm_nested_state,
+-				struct kvm_nested_state *kvm_state)
+-{
+-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+-	struct vmcs12 *vmcs12;
+-	u32 exit_qual;
+-	int ret;
+-
+-	if (kvm_state->format != 0)
+-		return -EINVAL;
+-
+-	if (!nested_vmx_allowed(vcpu))
+-		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
+-
+-	if (kvm_state->vmx.vmxon_pa == -1ull) {
+-		if (kvm_state->vmx.smm.flags)
+-			return -EINVAL;
+-
+-		if (kvm_state->vmx.vmcs_pa != -1ull)
+-			return -EINVAL;
+-
+-		vmx_leave_nested(vcpu);
+-		return 0;
+-	}
+-
+-	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
+-		return -EINVAL;
+-
+-	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+-	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+-		return -EINVAL;
+-
+-	if (kvm_state->vmx.smm.flags &
+-	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
+-		return -EINVAL;
+-
+-	/*
+-	 * SMM temporarily disables VMX, so we cannot be in guest mode,
+-	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
+-	 * must be zero.
+-	 */
+-	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
+-		return -EINVAL;
+-
+-	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+-	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
+-		return -EINVAL;
+-
+-	vmx_leave_nested(vcpu);
+-	if (kvm_state->vmx.vmxon_pa == -1ull)
+-		return 0;
+-
+-	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
+-	ret = enter_vmx_operation(vcpu);
+-	if (ret)
+-		return ret;
+-
+-	/* Empty 'VMXON' state is permitted */
+-	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
+-		return 0;
+-
+-	if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
+-	    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
+-		return -EINVAL;
+-
+-	set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+-
+-	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
+-		vmx->nested.smm.vmxon = true;
+-		vmx->nested.vmxon = false;
+-
+-		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
+-			vmx->nested.smm.guest_mode = true;
+-	}
+-
+-	vmcs12 = get_vmcs12(vcpu);
+-	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
+-		return -EFAULT;
+-
+-	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
+-		return -EINVAL;
+-
+-	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+-		return 0;
+-
+-	vmx->nested.nested_run_pending =
+-		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
+-
+-	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+-	    vmcs12->vmcs_link_pointer != -1ull) {
+-		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
+-		if (kvm_state->size < sizeof(*kvm_state) + 2 * sizeof(*vmcs12))
+-			return -EINVAL;
+-
+-		if (copy_from_user(shadow_vmcs12,
+-				   user_kvm_nested_state->data + VMCS12_SIZE,
+-				   sizeof(*vmcs12)))
+-			return -EFAULT;
+-
+-		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+-		    !shadow_vmcs12->hdr.shadow_vmcs)
+-			return -EINVAL;
+-	}
+-
+-	if (check_vmentry_prereqs(vcpu, vmcs12) ||
+-	    check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+-		return -EINVAL;
+-
+-	vmx->nested.dirty_vmcs12 = true;
+-	ret = enter_vmx_non_root_mode(vcpu, NULL);
+-	if (ret)
+-		return -EINVAL;
+-
+-	return 0;
+-}
+-
+-static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
+-	.cpu_has_kvm_support = cpu_has_kvm_support,
+-	.disabled_by_bios = vmx_disabled_by_bios,
+-	.hardware_setup = hardware_setup,
+-	.hardware_unsetup = hardware_unsetup,
+-	.check_processor_compatibility = vmx_check_processor_compat,
+-	.hardware_enable = hardware_enable,
+-	.hardware_disable = hardware_disable,
+-	.cpu_has_accelerated_tpr = report_flexpriority,
+-	.has_emulated_msr = vmx_has_emulated_msr,
+-
+-	.vm_init = vmx_vm_init,
+-	.vm_alloc = vmx_vm_alloc,
+-	.vm_free = vmx_vm_free,
+-
+-	.vcpu_create = vmx_create_vcpu,
+-	.vcpu_free = vmx_free_vcpu,
+-	.vcpu_reset = vmx_vcpu_reset,
+-
+-	.prepare_guest_switch = vmx_prepare_switch_to_guest,
+-	.vcpu_load = vmx_vcpu_load,
+-	.vcpu_put = vmx_vcpu_put,
+-
+-	.update_bp_intercept = update_exception_bitmap,
+-	.get_msr_feature = vmx_get_msr_feature,
+-	.get_msr = vmx_get_msr,
+-	.set_msr = vmx_set_msr,
+-	.get_segment_base = vmx_get_segment_base,
+-	.get_segment = vmx_get_segment,
+-	.set_segment = vmx_set_segment,
+-	.get_cpl = vmx_get_cpl,
+-	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+-	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
+-	.decache_cr3 = vmx_decache_cr3,
+-	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
+-	.set_cr0 = vmx_set_cr0,
+-	.set_cr3 = vmx_set_cr3,
+-	.set_cr4 = vmx_set_cr4,
+-	.set_efer = vmx_set_efer,
+-	.get_idt = vmx_get_idt,
+-	.set_idt = vmx_set_idt,
+-	.get_gdt = vmx_get_gdt,
+-	.set_gdt = vmx_set_gdt,
+-	.get_dr6 = vmx_get_dr6,
+-	.set_dr6 = vmx_set_dr6,
+-	.set_dr7 = vmx_set_dr7,
+-	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+-	.cache_reg = vmx_cache_reg,
+-	.get_rflags = vmx_get_rflags,
+-	.set_rflags = vmx_set_rflags,
+-
+-	.tlb_flush = vmx_flush_tlb,
+-	.tlb_flush_gva = vmx_flush_tlb_gva,
+-
+-	.run = vmx_vcpu_run,
+-	.handle_exit = vmx_handle_exit,
+-	.skip_emulated_instruction = skip_emulated_instruction,
+-	.set_interrupt_shadow = vmx_set_interrupt_shadow,
+-	.get_interrupt_shadow = vmx_get_interrupt_shadow,
+-	.patch_hypercall = vmx_patch_hypercall,
+-	.set_irq = vmx_inject_irq,
+-	.set_nmi = vmx_inject_nmi,
+-	.queue_exception = vmx_queue_exception,
+-	.cancel_injection = vmx_cancel_injection,
+-	.interrupt_allowed = vmx_interrupt_allowed,
+-	.nmi_allowed = vmx_nmi_allowed,
+-	.get_nmi_mask = vmx_get_nmi_mask,
+-	.set_nmi_mask = vmx_set_nmi_mask,
+-	.enable_nmi_window = enable_nmi_window,
+-	.enable_irq_window = enable_irq_window,
+-	.update_cr8_intercept = update_cr8_intercept,
+-	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
+-	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+-	.get_enable_apicv = vmx_get_enable_apicv,
+-	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
+-	.load_eoi_exitmap = vmx_load_eoi_exitmap,
+-	.apicv_post_state_restore = vmx_apicv_post_state_restore,
+-	.hwapic_irr_update = vmx_hwapic_irr_update,
+-	.hwapic_isr_update = vmx_hwapic_isr_update,
+-	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
+-	.sync_pir_to_irr = vmx_sync_pir_to_irr,
+-	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+-	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
+-
+-	.set_tss_addr = vmx_set_tss_addr,
+-	.set_identity_map_addr = vmx_set_identity_map_addr,
+-	.get_tdp_level = get_ept_level,
+-	.get_mt_mask = vmx_get_mt_mask,
+-
+-	.get_exit_info = vmx_get_exit_info,
+-
+-	.get_lpage_level = vmx_get_lpage_level,
+-
+-	.cpuid_update = vmx_cpuid_update,
+-
+-	.rdtscp_supported = vmx_rdtscp_supported,
+-	.invpcid_supported = vmx_invpcid_supported,
+-
+-	.set_supported_cpuid = vmx_set_supported_cpuid,
+-
+-	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+-
+-	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
+-	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
+-
+-	.set_tdp_cr3 = vmx_set_cr3,
+-
+-	.check_intercept = vmx_check_intercept,
+-	.handle_external_intr = vmx_handle_external_intr,
+-	.mpx_supported = vmx_mpx_supported,
+-	.xsaves_supported = vmx_xsaves_supported,
+-	.umip_emulated = vmx_umip_emulated,
+-
+-	.check_nested_events = vmx_check_nested_events,
+-	.request_immediate_exit = vmx_request_immediate_exit,
+-
+-	.sched_in = vmx_sched_in,
+-
+-	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+-	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+-	.flush_log_dirty = vmx_flush_log_dirty,
+-	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+-	.write_log_dirty = vmx_write_pml_buffer,
+-
+-	.pre_block = vmx_pre_block,
+-	.post_block = vmx_post_block,
+-
+-	.pmu_ops = &intel_pmu_ops,
+-
+-	.update_pi_irte = vmx_update_pi_irte,
+-
+-#ifdef CONFIG_X86_64
+-	.set_hv_timer = vmx_set_hv_timer,
+-	.cancel_hv_timer = vmx_cancel_hv_timer,
+-#endif
+-
+-	.setup_mce = vmx_setup_mce,
+-
+-	.get_nested_state = vmx_get_nested_state,
+-	.set_nested_state = vmx_set_nested_state,
+-	.get_vmcs12_pages = nested_get_vmcs12_pages,
+-
+-	.smi_allowed = vmx_smi_allowed,
+-	.pre_enter_smm = vmx_pre_enter_smm,
+-	.pre_leave_smm = vmx_pre_leave_smm,
+-	.enable_smi_window = enable_smi_window,
+-};
+-
+-static void vmx_cleanup_l1d_flush(void)
+-{
+-	if (vmx_l1d_flush_pages) {
+-		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
+-		vmx_l1d_flush_pages = NULL;
+-	}
+-	/* Restore state so sysfs ignores VMX */
+-	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+-}
+-
+-static void vmx_exit(void)
+-{
+-#ifdef CONFIG_KEXEC_CORE
+-	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+-	synchronize_rcu();
+-#endif
+-
+-	kvm_exit();
+-
+-#if IS_ENABLED(CONFIG_HYPERV)
+-	if (static_branch_unlikely(&enable_evmcs)) {
+-		int cpu;
+-		struct hv_vp_assist_page *vp_ap;
+-		/*
+-		 * Reset everything to support using non-enlightened VMCS
+-		 * access later (e.g. when we reload the module with
+-		 * enlightened_vmcs=0)
+-		 */
+-		for_each_online_cpu(cpu) {
+-			vp_ap =	hv_get_vp_assist_page(cpu);
+-
+-			if (!vp_ap)
+-				continue;
+-
+-			vp_ap->current_nested_vmcs = 0;
+-			vp_ap->enlighten_vmentry = 0;
+-		}
+-
+-		static_branch_disable(&enable_evmcs);
+-	}
+-#endif
+-	vmx_cleanup_l1d_flush();
+-}
+-module_exit(vmx_exit);
+-
+-static int __init vmx_init(void)
+-{
+-	int r, cpu;
+-
+-#if IS_ENABLED(CONFIG_HYPERV)
+-	/*
+-	 * Enlightened VMCS usage should be recommended and the host needs
+-	 * to support eVMCS v1 or above. We can also disable eVMCS support
+-	 * with module parameter.
+-	 */
+-	if (enlightened_vmcs &&
+-	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
+-	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
+-	    KVM_EVMCS_VERSION) {
+-		int cpu;
+-
+-		/* Check that we have assist pages on all online CPUs */
+-		for_each_online_cpu(cpu) {
+-			if (!hv_get_vp_assist_page(cpu)) {
+-				enlightened_vmcs = false;
+-				break;
+-			}
+-		}
+-
+-		if (enlightened_vmcs) {
+-			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
+-			static_branch_enable(&enable_evmcs);
+-		}
+-	} else {
+-		enlightened_vmcs = false;
+-	}
+-#endif
+-
+-	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
+-		     __alignof__(struct vcpu_vmx), THIS_MODULE);
+-	if (r)
+-		return r;
+-
+-	/*
+-	 * Must be called after kvm_init() so enable_ept is properly set
+-	 * up. Hand the parameter mitigation value in which was stored in
+-	 * the pre module init parser. If no parameter was given, it will
+-	 * contain 'auto' which will be turned into the default 'cond'
+-	 * mitigation mode.
+-	 */
+-	if (boot_cpu_has(X86_BUG_L1TF)) {
+-		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+-		if (r) {
+-			vmx_exit();
+-			return r;
+-		}
+-	}
+-
+-	vmx_setup_fb_clear_ctrl();
+-
+-	for_each_possible_cpu(cpu) {
+-		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+-
+-		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
+-		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+-	}
+-
+-#ifdef CONFIG_KEXEC_CORE
+-	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+-			   crash_vmclear_local_loaded_vmcss);
+-#endif
+-	vmx_check_vmcs12_offsets();
+-
+-	return 0;
+-}
+-module_init(vmx_init);
+diff --git a/arch/x86/kvm/vmx/pmu_intel.c b/arch/x86/kvm/vmx/pmu_intel.c
+new file mode 100644
+index 0000000000000..611f9e60f8154
+--- /dev/null
++++ b/arch/x86/kvm/vmx/pmu_intel.c
+@@ -0,0 +1,374 @@
++/*
++ * KVM PMU support for Intel CPUs
++ *
++ * Copyright 2011 Red Hat, Inc. and/or its affiliates.
++ *
++ * Authors:
++ *   Avi Kivity   <avi@redhat.com>
++ *   Gleb Natapov <gleb@redhat.com>
++ *
++ * This work is licensed under the terms of the GNU GPL, version 2.  See
++ * the COPYING file in the top-level directory.
++ *
++ */
++#include <linux/types.h>
++#include <linux/kvm_host.h>
++#include <linux/perf_event.h>
++#include <asm/perf_event.h>
++#include "x86.h"
++#include "cpuid.h"
++#include "lapic.h"
++#include "pmu.h"
++
++static struct kvm_event_hw_type_mapping intel_arch_events[] = {
++	/* Index must match CPUID 0x0A.EBX bit vector */
++	[0] = { 0x3c, 0x00, PERF_COUNT_HW_CPU_CYCLES },
++	[1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS },
++	[2] = { 0x3c, 0x01, PERF_COUNT_HW_BUS_CYCLES  },
++	[3] = { 0x2e, 0x4f, PERF_COUNT_HW_CACHE_REFERENCES },
++	[4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES },
++	[5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
++	[6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES },
++	[7] = { 0x00, 0x03, PERF_COUNT_HW_REF_CPU_CYCLES },
++};
++
++/* mapping between fixed pmc index and intel_arch_events array */
++static int fixed_pmc_events[] = {1, 0, 7};
++
++static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
++{
++	int i;
++
++	for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
++		u8 new_ctrl = fixed_ctrl_field(data, i);
++		u8 old_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, i);
++		struct kvm_pmc *pmc;
++
++		pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i);
++
++		if (old_ctrl == new_ctrl)
++			continue;
++
++		reprogram_fixed_counter(pmc, new_ctrl, i);
++	}
++
++	pmu->fixed_ctr_ctrl = data;
++}
++
++/* function is called when global control register has been updated. */
++static void global_ctrl_changed(struct kvm_pmu *pmu, u64 data)
++{
++	int bit;
++	u64 diff = pmu->global_ctrl ^ data;
++
++	pmu->global_ctrl = data;
++
++	for_each_set_bit(bit, (unsigned long *)&diff, X86_PMC_IDX_MAX)
++		reprogram_counter(pmu, bit);
++}
++
++static unsigned intel_find_arch_event(struct kvm_pmu *pmu,
++				      u8 event_select,
++				      u8 unit_mask)
++{
++	int i;
++
++	for (i = 0; i < ARRAY_SIZE(intel_arch_events); i++)
++		if (intel_arch_events[i].eventsel == event_select
++		    && intel_arch_events[i].unit_mask == unit_mask
++		    && (pmu->available_event_types & (1 << i)))
++			break;
++
++	if (i == ARRAY_SIZE(intel_arch_events))
++		return PERF_COUNT_HW_MAX;
++
++	return intel_arch_events[i].event_type;
++}
++
++static unsigned intel_find_fixed_event(int idx)
++{
++	u32 event;
++	size_t size = ARRAY_SIZE(fixed_pmc_events);
++
++	if (idx >= size)
++		return PERF_COUNT_HW_MAX;
++
++	event = fixed_pmc_events[array_index_nospec(idx, size)];
++	return intel_arch_events[event].event_type;
++}
++
++/* check if a PMC is enabled by comparing it with globl_ctrl bits. */
++static bool intel_pmc_is_enabled(struct kvm_pmc *pmc)
++{
++	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
++
++	return test_bit(pmc->idx, (unsigned long *)&pmu->global_ctrl);
++}
++
++static struct kvm_pmc *intel_pmc_idx_to_pmc(struct kvm_pmu *pmu, int pmc_idx)
++{
++	if (pmc_idx < INTEL_PMC_IDX_FIXED)
++		return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + pmc_idx,
++				  MSR_P6_EVNTSEL0);
++	else {
++		u32 idx = pmc_idx - INTEL_PMC_IDX_FIXED;
++
++		return get_fixed_pmc(pmu, idx + MSR_CORE_PERF_FIXED_CTR0);
++	}
++}
++
++/* returns 0 if idx's corresponding MSR exists; otherwise returns 1. */
++static int intel_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	bool fixed = idx & (1u << 30);
++
++	idx &= ~(3u << 30);
++
++	return (!fixed && idx >= pmu->nr_arch_gp_counters) ||
++		(fixed && idx >= pmu->nr_arch_fixed_counters);
++}
++
++static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu,
++					    unsigned idx, u64 *mask)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	bool fixed = idx & (1u << 30);
++	struct kvm_pmc *counters;
++	unsigned int num_counters;
++
++	idx &= ~(3u << 30);
++	if (fixed) {
++		counters = pmu->fixed_counters;
++		num_counters = pmu->nr_arch_fixed_counters;
++	} else {
++		counters = pmu->gp_counters;
++		num_counters = pmu->nr_arch_gp_counters;
++	}
++	if (idx >= num_counters)
++		return NULL;
++	*mask &= pmu->counter_bitmask[fixed ? KVM_PMC_FIXED : KVM_PMC_GP];
++	return &counters[array_index_nospec(idx, num_counters)];
++}
++
++static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	int ret;
++
++	switch (msr) {
++	case MSR_CORE_PERF_FIXED_CTR_CTRL:
++	case MSR_CORE_PERF_GLOBAL_STATUS:
++	case MSR_CORE_PERF_GLOBAL_CTRL:
++	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
++		ret = pmu->version > 1;
++		break;
++	default:
++		ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) ||
++			get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) ||
++			get_fixed_pmc(pmu, msr);
++		break;
++	}
++
++	return ret;
++}
++
++static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	struct kvm_pmc *pmc;
++
++	switch (msr) {
++	case MSR_CORE_PERF_FIXED_CTR_CTRL:
++		*data = pmu->fixed_ctr_ctrl;
++		return 0;
++	case MSR_CORE_PERF_GLOBAL_STATUS:
++		*data = pmu->global_status;
++		return 0;
++	case MSR_CORE_PERF_GLOBAL_CTRL:
++		*data = pmu->global_ctrl;
++		return 0;
++	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
++		*data = pmu->global_ovf_ctrl;
++		return 0;
++	default:
++		if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0))) {
++			u64 val = pmc_read_counter(pmc);
++			*data = val & pmu->counter_bitmask[KVM_PMC_GP];
++			return 0;
++		} else if ((pmc = get_fixed_pmc(pmu, msr))) {
++			u64 val = pmc_read_counter(pmc);
++			*data = val & pmu->counter_bitmask[KVM_PMC_FIXED];
++			return 0;
++		} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
++			*data = pmc->eventsel;
++			return 0;
++		}
++	}
++
++	return 1;
++}
++
++static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	struct kvm_pmc *pmc;
++	u32 msr = msr_info->index;
++	u64 data = msr_info->data;
++
++	switch (msr) {
++	case MSR_CORE_PERF_FIXED_CTR_CTRL:
++		if (pmu->fixed_ctr_ctrl == data)
++			return 0;
++		if (!(data & 0xfffffffffffff444ull)) {
++			reprogram_fixed_counters(pmu, data);
++			return 0;
++		}
++		break;
++	case MSR_CORE_PERF_GLOBAL_STATUS:
++		if (msr_info->host_initiated) {
++			pmu->global_status = data;
++			return 0;
++		}
++		break; /* RO MSR */
++	case MSR_CORE_PERF_GLOBAL_CTRL:
++		if (pmu->global_ctrl == data)
++			return 0;
++		if (!(data & pmu->global_ctrl_mask)) {
++			global_ctrl_changed(pmu, data);
++			return 0;
++		}
++		break;
++	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
++		if (!(data & (pmu->global_ctrl_mask & ~(3ull<<62)))) {
++			if (!msr_info->host_initiated)
++				pmu->global_status &= ~data;
++			pmu->global_ovf_ctrl = data;
++			return 0;
++		}
++		break;
++	default:
++		if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0))) {
++			if (msr_info->host_initiated)
++				pmc->counter = data;
++			else
++				pmc->counter = (s32)data;
++			return 0;
++		} else if ((pmc = get_fixed_pmc(pmu, msr))) {
++			pmc->counter = data;
++			return 0;
++		} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
++			if (data == pmc->eventsel)
++				return 0;
++			if (!(data & pmu->reserved_bits)) {
++				reprogram_gp_counter(pmc, data);
++				return 0;
++			}
++		}
++	}
++
++	return 1;
++}
++
++static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	struct kvm_cpuid_entry2 *entry;
++	union cpuid10_eax eax;
++	union cpuid10_edx edx;
++
++	pmu->nr_arch_gp_counters = 0;
++	pmu->nr_arch_fixed_counters = 0;
++	pmu->counter_bitmask[KVM_PMC_GP] = 0;
++	pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
++	pmu->version = 0;
++	pmu->reserved_bits = 0xffffffff00200000ull;
++
++	entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
++	if (!entry)
++		return;
++	eax.full = entry->eax;
++	edx.full = entry->edx;
++
++	pmu->version = eax.split.version_id;
++	if (!pmu->version)
++		return;
++
++	pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
++					INTEL_PMC_MAX_GENERIC);
++	pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
++	pmu->available_event_types = ~entry->ebx &
++					((1ull << eax.split.mask_length) - 1);
++
++	if (pmu->version == 1) {
++		pmu->nr_arch_fixed_counters = 0;
++	} else {
++		pmu->nr_arch_fixed_counters =
++			min_t(int, edx.split.num_counters_fixed,
++				INTEL_PMC_MAX_FIXED);
++		pmu->counter_bitmask[KVM_PMC_FIXED] =
++			((u64)1 << edx.split.bit_width_fixed) - 1;
++	}
++
++	pmu->global_ctrl = ((1ull << pmu->nr_arch_gp_counters) - 1) |
++		(((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED);
++	pmu->global_ctrl_mask = ~pmu->global_ctrl;
++
++	entry = kvm_find_cpuid_entry(vcpu, 7, 0);
++	if (entry &&
++	    (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
++	    (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM)))
++		pmu->reserved_bits ^= HSW_IN_TX|HSW_IN_TX_CHECKPOINTED;
++}
++
++static void intel_pmu_init(struct kvm_vcpu *vcpu)
++{
++	int i;
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++
++	for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) {
++		pmu->gp_counters[i].type = KVM_PMC_GP;
++		pmu->gp_counters[i].vcpu = vcpu;
++		pmu->gp_counters[i].idx = i;
++	}
++
++	for (i = 0; i < INTEL_PMC_MAX_FIXED; i++) {
++		pmu->fixed_counters[i].type = KVM_PMC_FIXED;
++		pmu->fixed_counters[i].vcpu = vcpu;
++		pmu->fixed_counters[i].idx = i + INTEL_PMC_IDX_FIXED;
++	}
++}
++
++static void intel_pmu_reset(struct kvm_vcpu *vcpu)
++{
++	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
++	int i;
++
++	for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) {
++		struct kvm_pmc *pmc = &pmu->gp_counters[i];
++
++		pmc_stop_counter(pmc);
++		pmc->counter = pmc->eventsel = 0;
++	}
++
++	for (i = 0; i < INTEL_PMC_MAX_FIXED; i++)
++		pmc_stop_counter(&pmu->fixed_counters[i]);
++
++	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status =
++		pmu->global_ovf_ctrl = 0;
++}
++
++struct kvm_pmu_ops intel_pmu_ops = {
++	.find_arch_event = intel_find_arch_event,
++	.find_fixed_event = intel_find_fixed_event,
++	.pmc_is_enabled = intel_pmc_is_enabled,
++	.pmc_idx_to_pmc = intel_pmc_idx_to_pmc,
++	.msr_idx_to_pmc = intel_msr_idx_to_pmc,
++	.is_valid_msr_idx = intel_is_valid_msr_idx,
++	.is_valid_msr = intel_is_valid_msr,
++	.get_msr = intel_pmu_get_msr,
++	.set_msr = intel_pmu_set_msr,
++	.refresh = intel_pmu_refresh,
++	.init = intel_pmu_init,
++	.reset = intel_pmu_reset,
++};
+diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
+new file mode 100644
+index 0000000000000..ec821a5d131a0
+--- /dev/null
++++ b/arch/x86/kvm/vmx/vmx.c
+@@ -0,0 +1,14764 @@
++/*
++ * Kernel-based Virtual Machine driver for Linux
++ *
++ * This module enables machines with Intel VT-x extensions to run virtual
++ * machines without emulation or binary translation.
++ *
++ * Copyright (C) 2006 Qumranet, Inc.
++ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
++ *
++ * Authors:
++ *   Avi Kivity   <avi@qumranet.com>
++ *   Yaniv Kamay  <yaniv@qumranet.com>
++ *
++ * This work is licensed under the terms of the GNU GPL, version 2.  See
++ * the COPYING file in the top-level directory.
++ *
++ */
++
++#include "irq.h"
++#include "mmu.h"
++#include "cpuid.h"
++#include "lapic.h"
++
++#include <linux/kvm_host.h>
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/mm.h>
++#include <linux/highmem.h>
++#include <linux/sched.h>
++#include <linux/sched/smt.h>
++#include <linux/moduleparam.h>
++#include <linux/mod_devicetable.h>
++#include <linux/trace_events.h>
++#include <linux/slab.h>
++#include <linux/tboot.h>
++#include <linux/hrtimer.h>
++#include <linux/frame.h>
++#include <linux/nospec.h>
++#include "kvm_cache_regs.h"
++#include "x86.h"
++
++#include <asm/asm.h>
++#include <asm/cpu.h>
++#include <asm/cpu_device_id.h>
++#include <asm/io.h>
++#include <asm/desc.h>
++#include <asm/vmx.h>
++#include <asm/virtext.h>
++#include <asm/mce.h>
++#include <asm/fpu/internal.h>
++#include <asm/perf_event.h>
++#include <asm/debugreg.h>
++#include <asm/kexec.h>
++#include <asm/apic.h>
++#include <asm/irq_remapping.h>
++#include <asm/mmu_context.h>
++#include <asm/spec-ctrl.h>
++#include <asm/mshyperv.h>
++
++#include "trace.h"
++#include "pmu.h"
++#include "vmx_evmcs.h"
++
++#define __ex(x) __kvm_handle_fault_on_reboot(x)
++#define __ex_clear(x, reg) \
++	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
++
++MODULE_AUTHOR("Qumranet");
++MODULE_LICENSE("GPL");
++
++static const struct x86_cpu_id vmx_cpu_id[] = {
++	X86_FEATURE_MATCH(X86_FEATURE_VMX),
++	{}
++};
++MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
++
++static bool __read_mostly enable_vpid = 1;
++module_param_named(vpid, enable_vpid, bool, 0444);
++
++static bool __read_mostly enable_vnmi = 1;
++module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
++
++static bool __read_mostly flexpriority_enabled = 1;
++module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
++
++static bool __read_mostly enable_ept = 1;
++module_param_named(ept, enable_ept, bool, S_IRUGO);
++
++static bool __read_mostly enable_unrestricted_guest = 1;
++module_param_named(unrestricted_guest,
++			enable_unrestricted_guest, bool, S_IRUGO);
++
++static bool __read_mostly enable_ept_ad_bits = 1;
++module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
++
++static bool __read_mostly emulate_invalid_guest_state = true;
++module_param(emulate_invalid_guest_state, bool, S_IRUGO);
++
++static bool __read_mostly fasteoi = 1;
++module_param(fasteoi, bool, S_IRUGO);
++
++static bool __read_mostly enable_apicv = 1;
++module_param(enable_apicv, bool, S_IRUGO);
++
++static bool __read_mostly enable_shadow_vmcs = 1;
++module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
++/*
++ * If nested=1, nested virtualization is supported, i.e., guests may use
++ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
++ * use VMX instructions.
++ */
++static bool __read_mostly nested = 0;
++module_param(nested, bool, S_IRUGO);
++
++static u64 __read_mostly host_xss;
++
++static bool __read_mostly enable_pml = 1;
++module_param_named(pml, enable_pml, bool, S_IRUGO);
++
++#define MSR_TYPE_R	1
++#define MSR_TYPE_W	2
++#define MSR_TYPE_RW	3
++
++#define MSR_BITMAP_MODE_X2APIC		1
++#define MSR_BITMAP_MODE_X2APIC_APICV	2
++
++#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
++
++/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
++static int __read_mostly cpu_preemption_timer_multi;
++static bool __read_mostly enable_preemption_timer = 1;
++#ifdef CONFIG_X86_64
++module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
++#endif
++
++#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
++#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
++#define KVM_VM_CR0_ALWAYS_ON				\
++	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
++	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
++#define KVM_CR4_GUEST_OWNED_BITS				      \
++	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
++	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
++
++#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
++#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
++#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
++
++#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
++
++#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
++
++/*
++ * Hyper-V requires all of these, so mark them as supported even though
++ * they are just treated the same as all-context.
++ */
++#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
++	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
++	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
++	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
++	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
++
++/*
++ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
++ * ple_gap:    upper bound on the amount of time between two successive
++ *             executions of PAUSE in a loop. Also indicate if ple enabled.
++ *             According to test, this time is usually smaller than 128 cycles.
++ * ple_window: upper bound on the amount of time a guest is allowed to execute
++ *             in a PAUSE loop. Tests indicate that most spinlocks are held for
++ *             less than 2^12 cycles
++ * Time is measured based on a counter that runs at the same rate as the TSC,
++ * refer SDM volume 3b section 21.6.13 & 22.1.3.
++ */
++static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
++module_param(ple_gap, uint, 0444);
++
++static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
++module_param(ple_window, uint, 0444);
++
++/* Default doubles per-vcpu window every exit. */
++static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
++module_param(ple_window_grow, uint, 0444);
++
++/* Default resets per-vcpu window every exit to ple_window. */
++static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
++module_param(ple_window_shrink, uint, 0444);
++
++/* Default is to compute the maximum so we can never overflow. */
++static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
++module_param(ple_window_max, uint, 0444);
++
++extern const ulong vmx_return;
++
++static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
++static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
++static DEFINE_MUTEX(vmx_l1d_flush_mutex);
++
++/* Storage for pre module init parameter parsing */
++static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
++
++static const struct {
++	const char *option;
++	bool for_parse;
++} vmentry_l1d_param[] = {
++	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
++	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
++	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
++	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
++	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
++	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
++};
++
++#define L1D_CACHE_ORDER 4
++static void *vmx_l1d_flush_pages;
++
++/* Control for disabling CPU Fill buffer clear */
++static bool __read_mostly vmx_fb_clear_ctrl_available;
++
++static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
++{
++	struct page *page;
++	unsigned int i;
++
++	if (!enable_ept) {
++		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
++		return 0;
++	}
++
++	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
++		u64 msr;
++
++		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
++		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
++			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
++			return 0;
++		}
++	}
++
++	/* If set to auto use the default l1tf mitigation method */
++	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
++		switch (l1tf_mitigation) {
++		case L1TF_MITIGATION_OFF:
++			l1tf = VMENTER_L1D_FLUSH_NEVER;
++			break;
++		case L1TF_MITIGATION_FLUSH_NOWARN:
++		case L1TF_MITIGATION_FLUSH:
++		case L1TF_MITIGATION_FLUSH_NOSMT:
++			l1tf = VMENTER_L1D_FLUSH_COND;
++			break;
++		case L1TF_MITIGATION_FULL:
++		case L1TF_MITIGATION_FULL_FORCE:
++			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
++			break;
++		}
++	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
++		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
++	}
++
++	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
++	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
++		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
++		if (!page)
++			return -ENOMEM;
++		vmx_l1d_flush_pages = page_address(page);
++
++		/*
++		 * Initialize each page with a different pattern in
++		 * order to protect against KSM in the nested
++		 * virtualization case.
++		 */
++		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
++			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
++			       PAGE_SIZE);
++		}
++	}
++
++	l1tf_vmx_mitigation = l1tf;
++
++	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
++		static_branch_enable(&vmx_l1d_should_flush);
++	else
++		static_branch_disable(&vmx_l1d_should_flush);
++
++	if (l1tf == VMENTER_L1D_FLUSH_COND)
++		static_branch_enable(&vmx_l1d_flush_cond);
++	else
++		static_branch_disable(&vmx_l1d_flush_cond);
++	return 0;
++}
++
++static int vmentry_l1d_flush_parse(const char *s)
++{
++	unsigned int i;
++
++	if (s) {
++		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
++			if (vmentry_l1d_param[i].for_parse &&
++			    sysfs_streq(s, vmentry_l1d_param[i].option))
++				return i;
++		}
++	}
++	return -EINVAL;
++}
++
++static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
++{
++	int l1tf, ret;
++
++	l1tf = vmentry_l1d_flush_parse(s);
++	if (l1tf < 0)
++		return l1tf;
++
++	if (!boot_cpu_has(X86_BUG_L1TF))
++		return 0;
++
++	/*
++	 * Has vmx_init() run already? If not then this is the pre init
++	 * parameter parsing. In that case just store the value and let
++	 * vmx_init() do the proper setup after enable_ept has been
++	 * established.
++	 */
++	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
++		vmentry_l1d_flush_param = l1tf;
++		return 0;
++	}
++
++	mutex_lock(&vmx_l1d_flush_mutex);
++	ret = vmx_setup_l1d_flush(l1tf);
++	mutex_unlock(&vmx_l1d_flush_mutex);
++	return ret;
++}
++
++static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
++{
++	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
++		return sprintf(s, "???\n");
++
++	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
++}
++
++static const struct kernel_param_ops vmentry_l1d_flush_ops = {
++	.set = vmentry_l1d_flush_set,
++	.get = vmentry_l1d_flush_get,
++};
++module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
++
++enum ept_pointers_status {
++	EPT_POINTERS_CHECK = 0,
++	EPT_POINTERS_MATCH = 1,
++	EPT_POINTERS_MISMATCH = 2
++};
++
++struct kvm_vmx {
++	struct kvm kvm;
++
++	unsigned int tss_addr;
++	bool ept_identity_pagetable_done;
++	gpa_t ept_identity_map_addr;
++
++	enum ept_pointers_status ept_pointers_match;
++	spinlock_t ept_pointer_lock;
++};
++
++#define NR_AUTOLOAD_MSRS 8
++
++struct vmcs_hdr {
++	u32 revision_id:31;
++	u32 shadow_vmcs:1;
++};
++
++struct vmcs {
++	struct vmcs_hdr hdr;
++	u32 abort;
++	char data[0];
++};
++
++/*
++ * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
++ * and whose values change infrequently, but are not constant.  I.e. this is
++ * used as a write-through cache of the corresponding VMCS fields.
++ */
++struct vmcs_host_state {
++	unsigned long cr3;	/* May not match real cr3 */
++	unsigned long cr4;	/* May not match real cr4 */
++	unsigned long gs_base;
++	unsigned long fs_base;
++
++	u16           fs_sel, gs_sel, ldt_sel;
++#ifdef CONFIG_X86_64
++	u16           ds_sel, es_sel;
++#endif
++};
++
++/*
++ * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
++ * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
++ * loaded on this CPU (so we can clear them if the CPU goes down).
++ */
++struct loaded_vmcs {
++	struct vmcs *vmcs;
++	struct vmcs *shadow_vmcs;
++	int cpu;
++	bool launched;
++	bool nmi_known_unmasked;
++	bool hv_timer_armed;
++	/* Support for vnmi-less CPUs */
++	int soft_vnmi_blocked;
++	ktime_t entry_time;
++	s64 vnmi_blocked_time;
++	unsigned long *msr_bitmap;
++	struct list_head loaded_vmcss_on_cpu_link;
++	struct vmcs_host_state host_state;
++};
++
++struct shared_msr_entry {
++	unsigned index;
++	u64 data;
++	u64 mask;
++};
++
++/*
++ * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
++ * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
++ * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
++ * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
++ * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
++ * More than one of these structures may exist, if L1 runs multiple L2 guests.
++ * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
++ * underlying hardware which will be used to run L2.
++ * This structure is packed to ensure that its layout is identical across
++ * machines (necessary for live migration).
++ *
++ * IMPORTANT: Changing the layout of existing fields in this structure
++ * will break save/restore compatibility with older kvm releases. When
++ * adding new fields, either use space in the reserved padding* arrays
++ * or add the new fields to the end of the structure.
++ */
++typedef u64 natural_width;
++struct __packed vmcs12 {
++	/* According to the Intel spec, a VMCS region must start with the
++	 * following two fields. Then follow implementation-specific data.
++	 */
++	struct vmcs_hdr hdr;
++	u32 abort;
++
++	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
++	u32 padding[7]; /* room for future expansion */
++
++	u64 io_bitmap_a;
++	u64 io_bitmap_b;
++	u64 msr_bitmap;
++	u64 vm_exit_msr_store_addr;
++	u64 vm_exit_msr_load_addr;
++	u64 vm_entry_msr_load_addr;
++	u64 tsc_offset;
++	u64 virtual_apic_page_addr;
++	u64 apic_access_addr;
++	u64 posted_intr_desc_addr;
++	u64 ept_pointer;
++	u64 eoi_exit_bitmap0;
++	u64 eoi_exit_bitmap1;
++	u64 eoi_exit_bitmap2;
++	u64 eoi_exit_bitmap3;
++	u64 xss_exit_bitmap;
++	u64 guest_physical_address;
++	u64 vmcs_link_pointer;
++	u64 guest_ia32_debugctl;
++	u64 guest_ia32_pat;
++	u64 guest_ia32_efer;
++	u64 guest_ia32_perf_global_ctrl;
++	u64 guest_pdptr0;
++	u64 guest_pdptr1;
++	u64 guest_pdptr2;
++	u64 guest_pdptr3;
++	u64 guest_bndcfgs;
++	u64 host_ia32_pat;
++	u64 host_ia32_efer;
++	u64 host_ia32_perf_global_ctrl;
++	u64 vmread_bitmap;
++	u64 vmwrite_bitmap;
++	u64 vm_function_control;
++	u64 eptp_list_address;
++	u64 pml_address;
++	u64 padding64[3]; /* room for future expansion */
++	/*
++	 * To allow migration of L1 (complete with its L2 guests) between
++	 * machines of different natural widths (32 or 64 bit), we cannot have
++	 * unsigned long fields with no explict size. We use u64 (aliased
++	 * natural_width) instead. Luckily, x86 is little-endian.
++	 */
++	natural_width cr0_guest_host_mask;
++	natural_width cr4_guest_host_mask;
++	natural_width cr0_read_shadow;
++	natural_width cr4_read_shadow;
++	natural_width cr3_target_value0;
++	natural_width cr3_target_value1;
++	natural_width cr3_target_value2;
++	natural_width cr3_target_value3;
++	natural_width exit_qualification;
++	natural_width guest_linear_address;
++	natural_width guest_cr0;
++	natural_width guest_cr3;
++	natural_width guest_cr4;
++	natural_width guest_es_base;
++	natural_width guest_cs_base;
++	natural_width guest_ss_base;
++	natural_width guest_ds_base;
++	natural_width guest_fs_base;
++	natural_width guest_gs_base;
++	natural_width guest_ldtr_base;
++	natural_width guest_tr_base;
++	natural_width guest_gdtr_base;
++	natural_width guest_idtr_base;
++	natural_width guest_dr7;
++	natural_width guest_rsp;
++	natural_width guest_rip;
++	natural_width guest_rflags;
++	natural_width guest_pending_dbg_exceptions;
++	natural_width guest_sysenter_esp;
++	natural_width guest_sysenter_eip;
++	natural_width host_cr0;
++	natural_width host_cr3;
++	natural_width host_cr4;
++	natural_width host_fs_base;
++	natural_width host_gs_base;
++	natural_width host_tr_base;
++	natural_width host_gdtr_base;
++	natural_width host_idtr_base;
++	natural_width host_ia32_sysenter_esp;
++	natural_width host_ia32_sysenter_eip;
++	natural_width host_rsp;
++	natural_width host_rip;
++	natural_width paddingl[8]; /* room for future expansion */
++	u32 pin_based_vm_exec_control;
++	u32 cpu_based_vm_exec_control;
++	u32 exception_bitmap;
++	u32 page_fault_error_code_mask;
++	u32 page_fault_error_code_match;
++	u32 cr3_target_count;
++	u32 vm_exit_controls;
++	u32 vm_exit_msr_store_count;
++	u32 vm_exit_msr_load_count;
++	u32 vm_entry_controls;
++	u32 vm_entry_msr_load_count;
++	u32 vm_entry_intr_info_field;
++	u32 vm_entry_exception_error_code;
++	u32 vm_entry_instruction_len;
++	u32 tpr_threshold;
++	u32 secondary_vm_exec_control;
++	u32 vm_instruction_error;
++	u32 vm_exit_reason;
++	u32 vm_exit_intr_info;
++	u32 vm_exit_intr_error_code;
++	u32 idt_vectoring_info_field;
++	u32 idt_vectoring_error_code;
++	u32 vm_exit_instruction_len;
++	u32 vmx_instruction_info;
++	u32 guest_es_limit;
++	u32 guest_cs_limit;
++	u32 guest_ss_limit;
++	u32 guest_ds_limit;
++	u32 guest_fs_limit;
++	u32 guest_gs_limit;
++	u32 guest_ldtr_limit;
++	u32 guest_tr_limit;
++	u32 guest_gdtr_limit;
++	u32 guest_idtr_limit;
++	u32 guest_es_ar_bytes;
++	u32 guest_cs_ar_bytes;
++	u32 guest_ss_ar_bytes;
++	u32 guest_ds_ar_bytes;
++	u32 guest_fs_ar_bytes;
++	u32 guest_gs_ar_bytes;
++	u32 guest_ldtr_ar_bytes;
++	u32 guest_tr_ar_bytes;
++	u32 guest_interruptibility_info;
++	u32 guest_activity_state;
++	u32 guest_sysenter_cs;
++	u32 host_ia32_sysenter_cs;
++	u32 vmx_preemption_timer_value;
++	u32 padding32[7]; /* room for future expansion */
++	u16 virtual_processor_id;
++	u16 posted_intr_nv;
++	u16 guest_es_selector;
++	u16 guest_cs_selector;
++	u16 guest_ss_selector;
++	u16 guest_ds_selector;
++	u16 guest_fs_selector;
++	u16 guest_gs_selector;
++	u16 guest_ldtr_selector;
++	u16 guest_tr_selector;
++	u16 guest_intr_status;
++	u16 host_es_selector;
++	u16 host_cs_selector;
++	u16 host_ss_selector;
++	u16 host_ds_selector;
++	u16 host_fs_selector;
++	u16 host_gs_selector;
++	u16 host_tr_selector;
++	u16 guest_pml_index;
++};
++
++/*
++ * For save/restore compatibility, the vmcs12 field offsets must not change.
++ */
++#define CHECK_OFFSET(field, loc)				\
++	BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),	\
++		"Offset of " #field " in struct vmcs12 has changed.")
++
++static inline void vmx_check_vmcs12_offsets(void) {
++	CHECK_OFFSET(hdr, 0);
++	CHECK_OFFSET(abort, 4);
++	CHECK_OFFSET(launch_state, 8);
++	CHECK_OFFSET(io_bitmap_a, 40);
++	CHECK_OFFSET(io_bitmap_b, 48);
++	CHECK_OFFSET(msr_bitmap, 56);
++	CHECK_OFFSET(vm_exit_msr_store_addr, 64);
++	CHECK_OFFSET(vm_exit_msr_load_addr, 72);
++	CHECK_OFFSET(vm_entry_msr_load_addr, 80);
++	CHECK_OFFSET(tsc_offset, 88);
++	CHECK_OFFSET(virtual_apic_page_addr, 96);
++	CHECK_OFFSET(apic_access_addr, 104);
++	CHECK_OFFSET(posted_intr_desc_addr, 112);
++	CHECK_OFFSET(ept_pointer, 120);
++	CHECK_OFFSET(eoi_exit_bitmap0, 128);
++	CHECK_OFFSET(eoi_exit_bitmap1, 136);
++	CHECK_OFFSET(eoi_exit_bitmap2, 144);
++	CHECK_OFFSET(eoi_exit_bitmap3, 152);
++	CHECK_OFFSET(xss_exit_bitmap, 160);
++	CHECK_OFFSET(guest_physical_address, 168);
++	CHECK_OFFSET(vmcs_link_pointer, 176);
++	CHECK_OFFSET(guest_ia32_debugctl, 184);
++	CHECK_OFFSET(guest_ia32_pat, 192);
++	CHECK_OFFSET(guest_ia32_efer, 200);
++	CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
++	CHECK_OFFSET(guest_pdptr0, 216);
++	CHECK_OFFSET(guest_pdptr1, 224);
++	CHECK_OFFSET(guest_pdptr2, 232);
++	CHECK_OFFSET(guest_pdptr3, 240);
++	CHECK_OFFSET(guest_bndcfgs, 248);
++	CHECK_OFFSET(host_ia32_pat, 256);
++	CHECK_OFFSET(host_ia32_efer, 264);
++	CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
++	CHECK_OFFSET(vmread_bitmap, 280);
++	CHECK_OFFSET(vmwrite_bitmap, 288);
++	CHECK_OFFSET(vm_function_control, 296);
++	CHECK_OFFSET(eptp_list_address, 304);
++	CHECK_OFFSET(pml_address, 312);
++	CHECK_OFFSET(cr0_guest_host_mask, 344);
++	CHECK_OFFSET(cr4_guest_host_mask, 352);
++	CHECK_OFFSET(cr0_read_shadow, 360);
++	CHECK_OFFSET(cr4_read_shadow, 368);
++	CHECK_OFFSET(cr3_target_value0, 376);
++	CHECK_OFFSET(cr3_target_value1, 384);
++	CHECK_OFFSET(cr3_target_value2, 392);
++	CHECK_OFFSET(cr3_target_value3, 400);
++	CHECK_OFFSET(exit_qualification, 408);
++	CHECK_OFFSET(guest_linear_address, 416);
++	CHECK_OFFSET(guest_cr0, 424);
++	CHECK_OFFSET(guest_cr3, 432);
++	CHECK_OFFSET(guest_cr4, 440);
++	CHECK_OFFSET(guest_es_base, 448);
++	CHECK_OFFSET(guest_cs_base, 456);
++	CHECK_OFFSET(guest_ss_base, 464);
++	CHECK_OFFSET(guest_ds_base, 472);
++	CHECK_OFFSET(guest_fs_base, 480);
++	CHECK_OFFSET(guest_gs_base, 488);
++	CHECK_OFFSET(guest_ldtr_base, 496);
++	CHECK_OFFSET(guest_tr_base, 504);
++	CHECK_OFFSET(guest_gdtr_base, 512);
++	CHECK_OFFSET(guest_idtr_base, 520);
++	CHECK_OFFSET(guest_dr7, 528);
++	CHECK_OFFSET(guest_rsp, 536);
++	CHECK_OFFSET(guest_rip, 544);
++	CHECK_OFFSET(guest_rflags, 552);
++	CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
++	CHECK_OFFSET(guest_sysenter_esp, 568);
++	CHECK_OFFSET(guest_sysenter_eip, 576);
++	CHECK_OFFSET(host_cr0, 584);
++	CHECK_OFFSET(host_cr3, 592);
++	CHECK_OFFSET(host_cr4, 600);
++	CHECK_OFFSET(host_fs_base, 608);
++	CHECK_OFFSET(host_gs_base, 616);
++	CHECK_OFFSET(host_tr_base, 624);
++	CHECK_OFFSET(host_gdtr_base, 632);
++	CHECK_OFFSET(host_idtr_base, 640);
++	CHECK_OFFSET(host_ia32_sysenter_esp, 648);
++	CHECK_OFFSET(host_ia32_sysenter_eip, 656);
++	CHECK_OFFSET(host_rsp, 664);
++	CHECK_OFFSET(host_rip, 672);
++	CHECK_OFFSET(pin_based_vm_exec_control, 744);
++	CHECK_OFFSET(cpu_based_vm_exec_control, 748);
++	CHECK_OFFSET(exception_bitmap, 752);
++	CHECK_OFFSET(page_fault_error_code_mask, 756);
++	CHECK_OFFSET(page_fault_error_code_match, 760);
++	CHECK_OFFSET(cr3_target_count, 764);
++	CHECK_OFFSET(vm_exit_controls, 768);
++	CHECK_OFFSET(vm_exit_msr_store_count, 772);
++	CHECK_OFFSET(vm_exit_msr_load_count, 776);
++	CHECK_OFFSET(vm_entry_controls, 780);
++	CHECK_OFFSET(vm_entry_msr_load_count, 784);
++	CHECK_OFFSET(vm_entry_intr_info_field, 788);
++	CHECK_OFFSET(vm_entry_exception_error_code, 792);
++	CHECK_OFFSET(vm_entry_instruction_len, 796);
++	CHECK_OFFSET(tpr_threshold, 800);
++	CHECK_OFFSET(secondary_vm_exec_control, 804);
++	CHECK_OFFSET(vm_instruction_error, 808);
++	CHECK_OFFSET(vm_exit_reason, 812);
++	CHECK_OFFSET(vm_exit_intr_info, 816);
++	CHECK_OFFSET(vm_exit_intr_error_code, 820);
++	CHECK_OFFSET(idt_vectoring_info_field, 824);
++	CHECK_OFFSET(idt_vectoring_error_code, 828);
++	CHECK_OFFSET(vm_exit_instruction_len, 832);
++	CHECK_OFFSET(vmx_instruction_info, 836);
++	CHECK_OFFSET(guest_es_limit, 840);
++	CHECK_OFFSET(guest_cs_limit, 844);
++	CHECK_OFFSET(guest_ss_limit, 848);
++	CHECK_OFFSET(guest_ds_limit, 852);
++	CHECK_OFFSET(guest_fs_limit, 856);
++	CHECK_OFFSET(guest_gs_limit, 860);
++	CHECK_OFFSET(guest_ldtr_limit, 864);
++	CHECK_OFFSET(guest_tr_limit, 868);
++	CHECK_OFFSET(guest_gdtr_limit, 872);
++	CHECK_OFFSET(guest_idtr_limit, 876);
++	CHECK_OFFSET(guest_es_ar_bytes, 880);
++	CHECK_OFFSET(guest_cs_ar_bytes, 884);
++	CHECK_OFFSET(guest_ss_ar_bytes, 888);
++	CHECK_OFFSET(guest_ds_ar_bytes, 892);
++	CHECK_OFFSET(guest_fs_ar_bytes, 896);
++	CHECK_OFFSET(guest_gs_ar_bytes, 900);
++	CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
++	CHECK_OFFSET(guest_tr_ar_bytes, 908);
++	CHECK_OFFSET(guest_interruptibility_info, 912);
++	CHECK_OFFSET(guest_activity_state, 916);
++	CHECK_OFFSET(guest_sysenter_cs, 920);
++	CHECK_OFFSET(host_ia32_sysenter_cs, 924);
++	CHECK_OFFSET(vmx_preemption_timer_value, 928);
++	CHECK_OFFSET(virtual_processor_id, 960);
++	CHECK_OFFSET(posted_intr_nv, 962);
++	CHECK_OFFSET(guest_es_selector, 964);
++	CHECK_OFFSET(guest_cs_selector, 966);
++	CHECK_OFFSET(guest_ss_selector, 968);
++	CHECK_OFFSET(guest_ds_selector, 970);
++	CHECK_OFFSET(guest_fs_selector, 972);
++	CHECK_OFFSET(guest_gs_selector, 974);
++	CHECK_OFFSET(guest_ldtr_selector, 976);
++	CHECK_OFFSET(guest_tr_selector, 978);
++	CHECK_OFFSET(guest_intr_status, 980);
++	CHECK_OFFSET(host_es_selector, 982);
++	CHECK_OFFSET(host_cs_selector, 984);
++	CHECK_OFFSET(host_ss_selector, 986);
++	CHECK_OFFSET(host_ds_selector, 988);
++	CHECK_OFFSET(host_fs_selector, 990);
++	CHECK_OFFSET(host_gs_selector, 992);
++	CHECK_OFFSET(host_tr_selector, 994);
++	CHECK_OFFSET(guest_pml_index, 996);
++}
++
++/*
++ * VMCS12_REVISION is an arbitrary id that should be changed if the content or
++ * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
++ * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
++ *
++ * IMPORTANT: Changing this value will break save/restore compatibility with
++ * older kvm releases.
++ */
++#define VMCS12_REVISION 0x11e57ed0
++
++/*
++ * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
++ * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
++ * current implementation, 4K are reserved to avoid future complications.
++ */
++#define VMCS12_SIZE 0x1000
++
++/*
++ * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
++ * supported VMCS12 field encoding.
++ */
++#define VMCS12_MAX_FIELD_INDEX 0x17
++
++struct nested_vmx_msrs {
++	/*
++	 * We only store the "true" versions of the VMX capability MSRs. We
++	 * generate the "non-true" versions by setting the must-be-1 bits
++	 * according to the SDM.
++	 */
++	u32 procbased_ctls_low;
++	u32 procbased_ctls_high;
++	u32 secondary_ctls_low;
++	u32 secondary_ctls_high;
++	u32 pinbased_ctls_low;
++	u32 pinbased_ctls_high;
++	u32 exit_ctls_low;
++	u32 exit_ctls_high;
++	u32 entry_ctls_low;
++	u32 entry_ctls_high;
++	u32 misc_low;
++	u32 misc_high;
++	u32 ept_caps;
++	u32 vpid_caps;
++	u64 basic;
++	u64 cr0_fixed0;
++	u64 cr0_fixed1;
++	u64 cr4_fixed0;
++	u64 cr4_fixed1;
++	u64 vmcs_enum;
++	u64 vmfunc_controls;
++};
++
++/*
++ * The nested_vmx structure is part of vcpu_vmx, and holds information we need
++ * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
++ */
++struct nested_vmx {
++	/* Has the level1 guest done vmxon? */
++	bool vmxon;
++	gpa_t vmxon_ptr;
++	bool pml_full;
++
++	/* The guest-physical address of the current VMCS L1 keeps for L2 */
++	gpa_t current_vmptr;
++	/*
++	 * Cache of the guest's VMCS, existing outside of guest memory.
++	 * Loaded from guest memory during VMPTRLD. Flushed to guest
++	 * memory during VMCLEAR and VMPTRLD.
++	 */
++	struct vmcs12 *cached_vmcs12;
++	/*
++	 * Cache of the guest's shadow VMCS, existing outside of guest
++	 * memory. Loaded from guest memory during VM entry. Flushed
++	 * to guest memory during VM exit.
++	 */
++	struct vmcs12 *cached_shadow_vmcs12;
++	/*
++	 * Indicates if the shadow vmcs must be updated with the
++	 * data hold by vmcs12
++	 */
++	bool sync_shadow_vmcs;
++	bool dirty_vmcs12;
++
++	bool change_vmcs01_virtual_apic_mode;
++
++	/* L2 must run next, and mustn't decide to exit to L1. */
++	bool nested_run_pending;
++
++	struct loaded_vmcs vmcs02;
++
++	/*
++	 * Guest pages referred to in the vmcs02 with host-physical
++	 * pointers, so we must keep them pinned while L2 runs.
++	 */
++	struct page *apic_access_page;
++	struct page *virtual_apic_page;
++	struct page *pi_desc_page;
++	struct pi_desc *pi_desc;
++	bool pi_pending;
++	u16 posted_intr_nv;
++
++	struct hrtimer preemption_timer;
++	bool preemption_timer_expired;
++
++	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
++	u64 vmcs01_debugctl;
++	u64 vmcs01_guest_bndcfgs;
++
++	u16 vpid02;
++	u16 last_vpid;
++
++	struct nested_vmx_msrs msrs;
++
++	/* SMM related state */
++	struct {
++		/* in VMX operation on SMM entry? */
++		bool vmxon;
++		/* in guest mode on SMM entry? */
++		bool guest_mode;
++	} smm;
++};
++
++#define POSTED_INTR_ON  0
++#define POSTED_INTR_SN  1
++
++/* Posted-Interrupt Descriptor */
++struct pi_desc {
++	u32 pir[8];     /* Posted interrupt requested */
++	union {
++		struct {
++				/* bit 256 - Outstanding Notification */
++			u16	on	: 1,
++				/* bit 257 - Suppress Notification */
++				sn	: 1,
++				/* bit 271:258 - Reserved */
++				rsvd_1	: 14;
++				/* bit 279:272 - Notification Vector */
++			u8	nv;
++				/* bit 287:280 - Reserved */
++			u8	rsvd_2;
++				/* bit 319:288 - Notification Destination */
++			u32	ndst;
++		};
++		u64 control;
++	};
++	u32 rsvd[6];
++} __aligned(64);
++
++static bool pi_test_and_set_on(struct pi_desc *pi_desc)
++{
++	return test_and_set_bit(POSTED_INTR_ON,
++			(unsigned long *)&pi_desc->control);
++}
++
++static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
++{
++	return test_and_clear_bit(POSTED_INTR_ON,
++			(unsigned long *)&pi_desc->control);
++}
++
++static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
++{
++	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
++}
++
++static inline void pi_clear_sn(struct pi_desc *pi_desc)
++{
++	return clear_bit(POSTED_INTR_SN,
++			(unsigned long *)&pi_desc->control);
++}
++
++static inline void pi_set_sn(struct pi_desc *pi_desc)
++{
++	return set_bit(POSTED_INTR_SN,
++			(unsigned long *)&pi_desc->control);
++}
++
++static inline void pi_clear_on(struct pi_desc *pi_desc)
++{
++	clear_bit(POSTED_INTR_ON,
++  		  (unsigned long *)&pi_desc->control);
++}
++
++static inline int pi_test_on(struct pi_desc *pi_desc)
++{
++	return test_bit(POSTED_INTR_ON,
++			(unsigned long *)&pi_desc->control);
++}
++
++static inline int pi_test_sn(struct pi_desc *pi_desc)
++{
++	return test_bit(POSTED_INTR_SN,
++			(unsigned long *)&pi_desc->control);
++}
++
++struct vmx_msrs {
++	unsigned int		nr;
++	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
++};
++
++struct vcpu_vmx {
++	struct kvm_vcpu       vcpu;
++	unsigned long         host_rsp;
++	u8                    fail;
++	u8		      msr_bitmap_mode;
++	u32                   exit_intr_info;
++	u32                   idt_vectoring_info;
++	ulong                 rflags;
++	struct shared_msr_entry *guest_msrs;
++	int                   nmsrs;
++	int                   save_nmsrs;
++	bool                  guest_msrs_dirty;
++	unsigned long	      host_idt_base;
++#ifdef CONFIG_X86_64
++	u64 		      msr_host_kernel_gs_base;
++	u64 		      msr_guest_kernel_gs_base;
++#endif
++
++	u64 		      spec_ctrl;
++
++	u32 vm_entry_controls_shadow;
++	u32 vm_exit_controls_shadow;
++	u32 secondary_exec_control;
++
++	/*
++	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
++	 * non-nested (L1) guest, it always points to vmcs01. For a nested
++	 * guest (L2), it points to a different VMCS.  loaded_cpu_state points
++	 * to the VMCS whose state is loaded into the CPU registers that only
++	 * need to be switched when transitioning to/from the kernel; a NULL
++	 * value indicates that host state is loaded.
++	 */
++	struct loaded_vmcs    vmcs01;
++	struct loaded_vmcs   *loaded_vmcs;
++	struct loaded_vmcs   *loaded_cpu_state;
++	bool                  __launched; /* temporary, used in vmx_vcpu_run */
++	struct msr_autoload {
++		struct vmx_msrs guest;
++		struct vmx_msrs host;
++	} msr_autoload;
++
++	struct {
++		int vm86_active;
++		ulong save_rflags;
++		struct kvm_segment segs[8];
++	} rmode;
++	struct {
++		u32 bitmask; /* 4 bits per segment (1 bit per field) */
++		struct kvm_save_segment {
++			u16 selector;
++			unsigned long base;
++			u32 limit;
++			u32 ar;
++		} seg[8];
++	} segment_cache;
++	int vpid;
++	bool emulation_required;
++
++	u32 exit_reason;
++
++	/* Posted interrupt descriptor */
++	struct pi_desc pi_desc;
++
++	/* Support for a guest hypervisor (nested VMX) */
++	struct nested_vmx nested;
++
++	/* Dynamic PLE window. */
++	int ple_window;
++	bool ple_window_dirty;
++
++	bool req_immediate_exit;
++
++	/* Support for PML */
++#define PML_ENTITY_NUM		512
++	struct page *pml_pg;
++
++	/* apic deadline value in host tsc */
++	u64 hv_deadline_tsc;
++
++	u64 current_tsc_ratio;
++
++	u32 host_pkru;
++
++	unsigned long host_debugctlmsr;
++
++	/*
++	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
++	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
++	 * in msr_ia32_feature_control_valid_bits.
++	 */
++	u64 msr_ia32_feature_control;
++	u64 msr_ia32_feature_control_valid_bits;
++	u64 ept_pointer;
++	u64 msr_ia32_mcu_opt_ctrl;
++	bool disable_fb_clear;
++};
++
++enum segment_cache_field {
++	SEG_FIELD_SEL = 0,
++	SEG_FIELD_BASE = 1,
++	SEG_FIELD_LIMIT = 2,
++	SEG_FIELD_AR = 3,
++
++	SEG_FIELD_NR = 4
++};
++
++static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
++{
++	return container_of(kvm, struct kvm_vmx, kvm);
++}
++
++static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
++{
++	return container_of(vcpu, struct vcpu_vmx, vcpu);
++}
++
++static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
++{
++	return &(to_vmx(vcpu)->pi_desc);
++}
++
++#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
++#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
++#define FIELD(number, name)	[ROL16(number, 6)] = VMCS12_OFFSET(name)
++#define FIELD64(number, name)						\
++	FIELD(number, name),						\
++	[ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
++
++
++static u16 shadow_read_only_fields[] = {
++#define SHADOW_FIELD_RO(x) x,
++#include "vmx_shadow_fields.h"
++};
++static int max_shadow_read_only_fields =
++	ARRAY_SIZE(shadow_read_only_fields);
++
++static u16 shadow_read_write_fields[] = {
++#define SHADOW_FIELD_RW(x) x,
++#include "vmx_shadow_fields.h"
++};
++static int max_shadow_read_write_fields =
++	ARRAY_SIZE(shadow_read_write_fields);
++
++static const unsigned short vmcs_field_to_offset_table[] = {
++	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
++	FIELD(POSTED_INTR_NV, posted_intr_nv),
++	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
++	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
++	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
++	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
++	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
++	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
++	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
++	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
++	FIELD(GUEST_INTR_STATUS, guest_intr_status),
++	FIELD(GUEST_PML_INDEX, guest_pml_index),
++	FIELD(HOST_ES_SELECTOR, host_es_selector),
++	FIELD(HOST_CS_SELECTOR, host_cs_selector),
++	FIELD(HOST_SS_SELECTOR, host_ss_selector),
++	FIELD(HOST_DS_SELECTOR, host_ds_selector),
++	FIELD(HOST_FS_SELECTOR, host_fs_selector),
++	FIELD(HOST_GS_SELECTOR, host_gs_selector),
++	FIELD(HOST_TR_SELECTOR, host_tr_selector),
++	FIELD64(IO_BITMAP_A, io_bitmap_a),
++	FIELD64(IO_BITMAP_B, io_bitmap_b),
++	FIELD64(MSR_BITMAP, msr_bitmap),
++	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
++	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
++	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
++	FIELD64(PML_ADDRESS, pml_address),
++	FIELD64(TSC_OFFSET, tsc_offset),
++	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
++	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
++	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
++	FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
++	FIELD64(EPT_POINTER, ept_pointer),
++	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
++	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
++	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
++	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
++	FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
++	FIELD64(VMREAD_BITMAP, vmread_bitmap),
++	FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
++	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
++	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
++	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
++	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
++	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
++	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
++	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
++	FIELD64(GUEST_PDPTR0, guest_pdptr0),
++	FIELD64(GUEST_PDPTR1, guest_pdptr1),
++	FIELD64(GUEST_PDPTR2, guest_pdptr2),
++	FIELD64(GUEST_PDPTR3, guest_pdptr3),
++	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
++	FIELD64(HOST_IA32_PAT, host_ia32_pat),
++	FIELD64(HOST_IA32_EFER, host_ia32_efer),
++	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
++	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
++	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
++	FIELD(EXCEPTION_BITMAP, exception_bitmap),
++	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
++	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
++	FIELD(CR3_TARGET_COUNT, cr3_target_count),
++	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
++	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
++	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
++	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
++	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
++	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
++	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
++	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
++	FIELD(TPR_THRESHOLD, tpr_threshold),
++	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
++	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
++	FIELD(VM_EXIT_REASON, vm_exit_reason),
++	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
++	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
++	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
++	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
++	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
++	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
++	FIELD(GUEST_ES_LIMIT, guest_es_limit),
++	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
++	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
++	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
++	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
++	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
++	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
++	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
++	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
++	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
++	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
++	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
++	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
++	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
++	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
++	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
++	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
++	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
++	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
++	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
++	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
++	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
++	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
++	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
++	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
++	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
++	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
++	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
++	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
++	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
++	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
++	FIELD(EXIT_QUALIFICATION, exit_qualification),
++	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
++	FIELD(GUEST_CR0, guest_cr0),
++	FIELD(GUEST_CR3, guest_cr3),
++	FIELD(GUEST_CR4, guest_cr4),
++	FIELD(GUEST_ES_BASE, guest_es_base),
++	FIELD(GUEST_CS_BASE, guest_cs_base),
++	FIELD(GUEST_SS_BASE, guest_ss_base),
++	FIELD(GUEST_DS_BASE, guest_ds_base),
++	FIELD(GUEST_FS_BASE, guest_fs_base),
++	FIELD(GUEST_GS_BASE, guest_gs_base),
++	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
++	FIELD(GUEST_TR_BASE, guest_tr_base),
++	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
++	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
++	FIELD(GUEST_DR7, guest_dr7),
++	FIELD(GUEST_RSP, guest_rsp),
++	FIELD(GUEST_RIP, guest_rip),
++	FIELD(GUEST_RFLAGS, guest_rflags),
++	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
++	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
++	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
++	FIELD(HOST_CR0, host_cr0),
++	FIELD(HOST_CR3, host_cr3),
++	FIELD(HOST_CR4, host_cr4),
++	FIELD(HOST_FS_BASE, host_fs_base),
++	FIELD(HOST_GS_BASE, host_gs_base),
++	FIELD(HOST_TR_BASE, host_tr_base),
++	FIELD(HOST_GDTR_BASE, host_gdtr_base),
++	FIELD(HOST_IDTR_BASE, host_idtr_base),
++	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
++	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
++	FIELD(HOST_RSP, host_rsp),
++	FIELD(HOST_RIP, host_rip),
++};
++
++static inline short vmcs_field_to_offset(unsigned long field)
++{
++	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
++	unsigned short offset;
++	unsigned index;
++
++	if (field >> 15)
++		return -ENOENT;
++
++	index = ROL16(field, 6);
++	if (index >= size)
++		return -ENOENT;
++
++	index = array_index_nospec(index, size);
++	offset = vmcs_field_to_offset_table[index];
++	if (offset == 0)
++		return -ENOENT;
++	return offset;
++}
++
++static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
++{
++	return to_vmx(vcpu)->nested.cached_vmcs12;
++}
++
++static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
++{
++	return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
++}
++
++static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
++static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
++static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
++static bool vmx_xsaves_supported(void);
++static void vmx_set_segment(struct kvm_vcpu *vcpu,
++			    struct kvm_segment *var, int seg);
++static void vmx_get_segment(struct kvm_vcpu *vcpu,
++			    struct kvm_segment *var, int seg);
++static bool guest_state_valid(struct kvm_vcpu *vcpu);
++static u32 vmx_segment_access_rights(struct kvm_segment *var);
++static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
++static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
++static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
++static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
++					    u16 error_code);
++static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
++static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
++							  u32 msr, int type);
++
++static DEFINE_PER_CPU(struct vmcs *, vmxarea);
++static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
++/*
++ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
++ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
++ */
++static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
++
++/*
++ * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
++ * can find which vCPU should be waken up.
++ */
++static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
++static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
++
++enum {
++	VMX_VMREAD_BITMAP,
++	VMX_VMWRITE_BITMAP,
++	VMX_BITMAP_NR
++};
++
++static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
++
++#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
++#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
++
++static bool cpu_has_load_ia32_efer;
++static bool cpu_has_load_perf_global_ctrl;
++
++static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
++static DEFINE_SPINLOCK(vmx_vpid_lock);
++
++static struct vmcs_config {
++	int size;
++	int order;
++	u32 basic_cap;
++	u32 revision_id;
++	u32 pin_based_exec_ctrl;
++	u32 cpu_based_exec_ctrl;
++	u32 cpu_based_2nd_exec_ctrl;
++	u32 vmexit_ctrl;
++	u32 vmentry_ctrl;
++	struct nested_vmx_msrs nested;
++} vmcs_config;
++
++static struct vmx_capability {
++	u32 ept;
++	u32 vpid;
++} vmx_capability;
++
++#define VMX_SEGMENT_FIELD(seg)					\
++	[VCPU_SREG_##seg] = {                                   \
++		.selector = GUEST_##seg##_SELECTOR,		\
++		.base = GUEST_##seg##_BASE,		   	\
++		.limit = GUEST_##seg##_LIMIT,		   	\
++		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
++	}
++
++static const struct kvm_vmx_segment_field {
++	unsigned selector;
++	unsigned base;
++	unsigned limit;
++	unsigned ar_bytes;
++} kvm_vmx_segment_fields[] = {
++	VMX_SEGMENT_FIELD(CS),
++	VMX_SEGMENT_FIELD(DS),
++	VMX_SEGMENT_FIELD(ES),
++	VMX_SEGMENT_FIELD(FS),
++	VMX_SEGMENT_FIELD(GS),
++	VMX_SEGMENT_FIELD(SS),
++	VMX_SEGMENT_FIELD(TR),
++	VMX_SEGMENT_FIELD(LDTR),
++};
++
++static u64 host_efer;
++
++static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
++
++/*
++ * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
++ * away by decrementing the array size.
++ */
++static const u32 vmx_msr_index[] = {
++#ifdef CONFIG_X86_64
++	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
++#endif
++	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
++};
++
++DEFINE_STATIC_KEY_FALSE(enable_evmcs);
++
++#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
++
++#define KVM_EVMCS_VERSION 1
++
++#if IS_ENABLED(CONFIG_HYPERV)
++static bool __read_mostly enlightened_vmcs = true;
++module_param(enlightened_vmcs, bool, 0444);
++
++static inline void evmcs_write64(unsigned long field, u64 value)
++{
++	u16 clean_field;
++	int offset = get_evmcs_offset(field, &clean_field);
++
++	if (offset < 0)
++		return;
++
++	*(u64 *)((char *)current_evmcs + offset) = value;
++
++	current_evmcs->hv_clean_fields &= ~clean_field;
++}
++
++static inline void evmcs_write32(unsigned long field, u32 value)
++{
++	u16 clean_field;
++	int offset = get_evmcs_offset(field, &clean_field);
++
++	if (offset < 0)
++		return;
++
++	*(u32 *)((char *)current_evmcs + offset) = value;
++	current_evmcs->hv_clean_fields &= ~clean_field;
++}
++
++static inline void evmcs_write16(unsigned long field, u16 value)
++{
++	u16 clean_field;
++	int offset = get_evmcs_offset(field, &clean_field);
++
++	if (offset < 0)
++		return;
++
++	*(u16 *)((char *)current_evmcs + offset) = value;
++	current_evmcs->hv_clean_fields &= ~clean_field;
++}
++
++static inline u64 evmcs_read64(unsigned long field)
++{
++	int offset = get_evmcs_offset(field, NULL);
++
++	if (offset < 0)
++		return 0;
++
++	return *(u64 *)((char *)current_evmcs + offset);
++}
++
++static inline u32 evmcs_read32(unsigned long field)
++{
++	int offset = get_evmcs_offset(field, NULL);
++
++	if (offset < 0)
++		return 0;
++
++	return *(u32 *)((char *)current_evmcs + offset);
++}
++
++static inline u16 evmcs_read16(unsigned long field)
++{
++	int offset = get_evmcs_offset(field, NULL);
++
++	if (offset < 0)
++		return 0;
++
++	return *(u16 *)((char *)current_evmcs + offset);
++}
++
++static inline void evmcs_touch_msr_bitmap(void)
++{
++	if (unlikely(!current_evmcs))
++		return;
++
++	if (current_evmcs->hv_enlightenments_control.msr_bitmap)
++		current_evmcs->hv_clean_fields &=
++			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
++}
++
++static void evmcs_load(u64 phys_addr)
++{
++	struct hv_vp_assist_page *vp_ap =
++		hv_get_vp_assist_page(smp_processor_id());
++
++	vp_ap->current_nested_vmcs = phys_addr;
++	vp_ap->enlighten_vmentry = 1;
++}
++
++static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
++{
++	/*
++	 * Enlightened VMCSv1 doesn't support these:
++	 *
++	 *	POSTED_INTR_NV                  = 0x00000002,
++	 *	GUEST_INTR_STATUS               = 0x00000810,
++	 *	APIC_ACCESS_ADDR		= 0x00002014,
++	 *	POSTED_INTR_DESC_ADDR           = 0x00002016,
++	 *	EOI_EXIT_BITMAP0                = 0x0000201c,
++	 *	EOI_EXIT_BITMAP1                = 0x0000201e,
++	 *	EOI_EXIT_BITMAP2                = 0x00002020,
++	 *	EOI_EXIT_BITMAP3                = 0x00002022,
++	 */
++	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
++	vmcs_conf->cpu_based_2nd_exec_ctrl &=
++		~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
++	vmcs_conf->cpu_based_2nd_exec_ctrl &=
++		~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++	vmcs_conf->cpu_based_2nd_exec_ctrl &=
++		~SECONDARY_EXEC_APIC_REGISTER_VIRT;
++
++	/*
++	 *	GUEST_PML_INDEX			= 0x00000812,
++	 *	PML_ADDRESS			= 0x0000200e,
++	 */
++	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
++
++	/*	VM_FUNCTION_CONTROL             = 0x00002018, */
++	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
++
++	/*
++	 *	EPTP_LIST_ADDRESS               = 0x00002024,
++	 *	VMREAD_BITMAP                   = 0x00002026,
++	 *	VMWRITE_BITMAP                  = 0x00002028,
++	 */
++	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
++
++	/*
++	 *	TSC_MULTIPLIER                  = 0x00002032,
++	 */
++	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
++
++	/*
++	 *	PLE_GAP                         = 0x00004020,
++	 *	PLE_WINDOW                      = 0x00004022,
++	 */
++	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
++
++	/*
++	 *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
++	 */
++	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
++
++	/*
++	 *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
++	 *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
++	 */
++	vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
++	vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
++
++	/*
++	 * Currently unsupported in KVM:
++	 *	GUEST_IA32_RTIT_CTL		= 0x00002814,
++	 */
++}
++
++/* check_ept_pointer() should be under protection of ept_pointer_lock. */
++static void check_ept_pointer_match(struct kvm *kvm)
++{
++	struct kvm_vcpu *vcpu;
++	u64 tmp_eptp = INVALID_PAGE;
++	int i;
++
++	kvm_for_each_vcpu(i, vcpu, kvm) {
++		if (!VALID_PAGE(tmp_eptp)) {
++			tmp_eptp = to_vmx(vcpu)->ept_pointer;
++		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
++			to_kvm_vmx(kvm)->ept_pointers_match
++				= EPT_POINTERS_MISMATCH;
++			return;
++		}
++	}
++
++	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
++}
++
++static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
++{
++	int ret;
++
++	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++
++	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
++		check_ept_pointer_match(kvm);
++
++	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
++		ret = -ENOTSUPP;
++		goto out;
++	}
++
++	/*
++	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
++	 * base of EPT PML4 table, strip off EPT configuration information.
++	 */
++	ret = hyperv_flush_guest_mapping(
++			to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
++
++out:
++	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++	return ret;
++}
++#else /* !IS_ENABLED(CONFIG_HYPERV) */
++static inline void evmcs_write64(unsigned long field, u64 value) {}
++static inline void evmcs_write32(unsigned long field, u32 value) {}
++static inline void evmcs_write16(unsigned long field, u16 value) {}
++static inline u64 evmcs_read64(unsigned long field) { return 0; }
++static inline u32 evmcs_read32(unsigned long field) { return 0; }
++static inline u16 evmcs_read16(unsigned long field) { return 0; }
++static inline void evmcs_load(u64 phys_addr) {}
++static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
++static inline void evmcs_touch_msr_bitmap(void) {}
++#endif /* IS_ENABLED(CONFIG_HYPERV) */
++
++static inline bool is_exception_n(u32 intr_info, u8 vector)
++{
++	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
++			     INTR_INFO_VALID_MASK)) ==
++		(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
++}
++
++static inline bool is_debug(u32 intr_info)
++{
++	return is_exception_n(intr_info, DB_VECTOR);
++}
++
++static inline bool is_breakpoint(u32 intr_info)
++{
++	return is_exception_n(intr_info, BP_VECTOR);
++}
++
++static inline bool is_page_fault(u32 intr_info)
++{
++	return is_exception_n(intr_info, PF_VECTOR);
++}
++
++static inline bool is_no_device(u32 intr_info)
++{
++	return is_exception_n(intr_info, NM_VECTOR);
++}
++
++static inline bool is_invalid_opcode(u32 intr_info)
++{
++	return is_exception_n(intr_info, UD_VECTOR);
++}
++
++static inline bool is_gp_fault(u32 intr_info)
++{
++	return is_exception_n(intr_info, GP_VECTOR);
++}
++
++static inline bool is_external_interrupt(u32 intr_info)
++{
++	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
++		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
++}
++
++static inline bool is_machine_check(u32 intr_info)
++{
++	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
++			     INTR_INFO_VALID_MASK)) ==
++		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
++}
++
++/* Undocumented: icebp/int1 */
++static inline bool is_icebp(u32 intr_info)
++{
++	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
++		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
++}
++
++static inline bool cpu_has_vmx_msr_bitmap(void)
++{
++	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
++}
++
++static inline bool cpu_has_vmx_tpr_shadow(void)
++{
++	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
++}
++
++static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
++{
++	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
++}
++
++static inline bool cpu_has_secondary_exec_ctrls(void)
++{
++	return vmcs_config.cpu_based_exec_ctrl &
++		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
++}
++
++static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++}
++
++static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
++}
++
++static inline bool cpu_has_vmx_apic_register_virt(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_APIC_REGISTER_VIRT;
++}
++
++static inline bool cpu_has_vmx_virtual_intr_delivery(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
++}
++
++static inline bool cpu_has_vmx_encls_vmexit(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_ENCLS_EXITING;
++}
++
++/*
++ * Comment's format: document - errata name - stepping - processor name.
++ * Refer from
++ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
++ */
++static u32 vmx_preemption_cpu_tfms[] = {
++/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
++0x000206E6,
++/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
++/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
++/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
++0x00020652,
++/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
++0x00020655,
++/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
++/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
++/*
++ * 320767.pdf - AAP86  - B1 -
++ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
++ */
++0x000106E5,
++/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
++0x000106A0,
++/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
++0x000106A1,
++/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
++0x000106A4,
++ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
++ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
++ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
++0x000106A5,
++};
++
++static inline bool cpu_has_broken_vmx_preemption_timer(void)
++{
++	u32 eax = cpuid_eax(0x00000001), i;
++
++	/* Clear the reserved bits */
++	eax &= ~(0x3U << 14 | 0xfU << 28);
++	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
++		if (eax == vmx_preemption_cpu_tfms[i])
++			return true;
++
++	return false;
++}
++
++static inline bool cpu_has_vmx_preemption_timer(void)
++{
++	return vmcs_config.pin_based_exec_ctrl &
++		PIN_BASED_VMX_PREEMPTION_TIMER;
++}
++
++static inline bool cpu_has_vmx_posted_intr(void)
++{
++	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
++		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
++}
++
++static inline bool cpu_has_vmx_apicv(void)
++{
++	return cpu_has_vmx_apic_register_virt() &&
++		cpu_has_vmx_virtual_intr_delivery() &&
++		cpu_has_vmx_posted_intr();
++}
++
++static inline bool cpu_has_vmx_flexpriority(void)
++{
++	return cpu_has_vmx_tpr_shadow() &&
++		cpu_has_vmx_virtualize_apic_accesses();
++}
++
++static inline bool cpu_has_vmx_ept_execute_only(void)
++{
++	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
++}
++
++static inline bool cpu_has_vmx_ept_2m_page(void)
++{
++	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
++}
++
++static inline bool cpu_has_vmx_ept_1g_page(void)
++{
++	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
++}
++
++static inline bool cpu_has_vmx_ept_4levels(void)
++{
++	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
++}
++
++static inline bool cpu_has_vmx_ept_mt_wb(void)
++{
++	return vmx_capability.ept & VMX_EPTP_WB_BIT;
++}
++
++static inline bool cpu_has_vmx_ept_5levels(void)
++{
++	return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
++}
++
++static inline bool cpu_has_vmx_ept_ad_bits(void)
++{
++	return vmx_capability.ept & VMX_EPT_AD_BIT;
++}
++
++static inline bool cpu_has_vmx_invept_context(void)
++{
++	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
++}
++
++static inline bool cpu_has_vmx_invept_global(void)
++{
++	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
++}
++
++static inline bool cpu_has_vmx_invvpid_individual_addr(void)
++{
++	return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
++}
++
++static inline bool cpu_has_vmx_invvpid_single(void)
++{
++	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
++}
++
++static inline bool cpu_has_vmx_invvpid_global(void)
++{
++	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
++}
++
++static inline bool cpu_has_vmx_invvpid(void)
++{
++	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
++}
++
++static inline bool cpu_has_vmx_ept(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_ENABLE_EPT;
++}
++
++static inline bool cpu_has_vmx_unrestricted_guest(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_UNRESTRICTED_GUEST;
++}
++
++static inline bool cpu_has_vmx_ple(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
++}
++
++static inline bool cpu_has_vmx_basic_inout(void)
++{
++	return	(((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
++}
++
++static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
++{
++	return flexpriority_enabled && lapic_in_kernel(vcpu);
++}
++
++static inline bool cpu_has_vmx_vpid(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_ENABLE_VPID;
++}
++
++static inline bool cpu_has_vmx_rdtscp(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_RDTSCP;
++}
++
++static inline bool cpu_has_vmx_invpcid(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_ENABLE_INVPCID;
++}
++
++static inline bool cpu_has_virtual_nmis(void)
++{
++	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
++}
++
++static inline bool cpu_has_vmx_wbinvd_exit(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_WBINVD_EXITING;
++}
++
++static inline bool cpu_has_vmx_shadow_vmcs(void)
++{
++	u64 vmx_msr;
++	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
++	/* check if the cpu supports writing r/o exit information fields */
++	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
++		return false;
++
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_SHADOW_VMCS;
++}
++
++static inline bool cpu_has_vmx_pml(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
++}
++
++static inline bool cpu_has_vmx_tsc_scaling(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_TSC_SCALING;
++}
++
++static inline bool cpu_has_vmx_vmfunc(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_ENABLE_VMFUNC;
++}
++
++static bool vmx_umip_emulated(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_DESC;
++}
++
++static inline bool report_flexpriority(void)
++{
++	return flexpriority_enabled;
++}
++
++static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
++{
++	return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
++}
++
++/*
++ * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
++ * to modify any valid field of the VMCS, or are the VM-exit
++ * information fields read-only?
++ */
++static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
++{
++	return to_vmx(vcpu)->nested.msrs.misc_low &
++		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
++}
++
++static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
++{
++	return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
++}
++
++static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
++{
++	return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
++			CPU_BASED_MONITOR_TRAP_FLAG;
++}
++
++static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
++{
++	return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
++		SECONDARY_EXEC_SHADOW_VMCS;
++}
++
++static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
++{
++	return vmcs12->cpu_based_vm_exec_control & bit;
++}
++
++static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
++{
++	return (vmcs12->cpu_based_vm_exec_control &
++			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
++		(vmcs12->secondary_vm_exec_control & bit);
++}
++
++static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
++{
++	return vmcs12->pin_based_vm_exec_control &
++		PIN_BASED_VMX_PREEMPTION_TIMER;
++}
++
++static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
++{
++	return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
++}
++
++static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
++{
++	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
++}
++
++static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
++}
++
++static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
++}
++
++static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
++}
++
++static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
++}
++
++static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
++}
++
++static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
++}
++
++static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++}
++
++static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
++{
++	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
++}
++
++static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
++}
++
++static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has_vmfunc(vmcs12) &&
++		(vmcs12->vm_function_control &
++		 VMX_VMFUNC_EPTP_SWITCHING);
++}
++
++static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
++{
++	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
++}
++
++static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12)
++{
++	return vmcs12->vm_exit_controls &
++	    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
++}
++
++static inline bool is_nmi(u32 intr_info)
++{
++	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
++		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
++}
++
++static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
++			      u32 exit_intr_info,
++			      unsigned long exit_qualification);
++static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
++			struct vmcs12 *vmcs12,
++			u32 reason, unsigned long qualification);
++
++static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
++{
++	int i;
++
++	for (i = 0; i < vmx->nmsrs; ++i)
++		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
++			return i;
++	return -1;
++}
++
++static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
++{
++    struct {
++	u64 vpid : 16;
++	u64 rsvd : 48;
++	u64 gva;
++    } operand = { vpid, 0, gva };
++    bool error;
++
++    asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na)
++		  : CC_OUT(na) (error) : "a"(&operand), "c"(ext)
++		  : "memory");
++    BUG_ON(error);
++}
++
++static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
++{
++	struct {
++		u64 eptp, gpa;
++	} operand = {eptp, gpa};
++	bool error;
++
++	asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na)
++		      : CC_OUT(na) (error) : "a" (&operand), "c" (ext)
++		      : "memory");
++	BUG_ON(error);
++}
++
++static void vmx_setup_fb_clear_ctrl(void)
++{
++	u64 msr;
++
++	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
++	    !boot_cpu_has_bug(X86_BUG_MDS) &&
++	    !boot_cpu_has_bug(X86_BUG_TAA)) {
++		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
++		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
++			vmx_fb_clear_ctrl_available = true;
++	}
++}
++
++static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
++{
++	u64 msr;
++
++	if (!vmx->disable_fb_clear)
++		return;
++
++	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
++	msr |= FB_CLEAR_DIS;
++	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
++	/* Cache the MSR value to avoid reading it later */
++	vmx->msr_ia32_mcu_opt_ctrl = msr;
++}
++
++static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
++{
++	if (!vmx->disable_fb_clear)
++		return;
++
++	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
++	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
++}
++
++static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
++{
++	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
++
++	/*
++	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
++	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
++	 * execute VERW.
++	 */
++	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
++	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
++	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
++	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
++	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
++	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
++		vmx->disable_fb_clear = false;
++}
++
++static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
++{
++	int i;
++
++	i = __find_msr_index(vmx, msr);
++	if (i >= 0)
++		return &vmx->guest_msrs[i];
++	return NULL;
++}
++
++static void vmcs_clear(struct vmcs *vmcs)
++{
++	u64 phys_addr = __pa(vmcs);
++	bool error;
++
++	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na)
++		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
++		      : "memory");
++	if (unlikely(error))
++		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
++		       vmcs, phys_addr);
++}
++
++static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
++{
++	vmcs_clear(loaded_vmcs->vmcs);
++	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
++		vmcs_clear(loaded_vmcs->shadow_vmcs);
++	loaded_vmcs->cpu = -1;
++	loaded_vmcs->launched = 0;
++}
++
++static void vmcs_load(struct vmcs *vmcs)
++{
++	u64 phys_addr = __pa(vmcs);
++	bool error;
++
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_load(phys_addr);
++
++	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na)
++		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
++		      : "memory");
++	if (unlikely(error))
++		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
++		       vmcs, phys_addr);
++}
++
++#ifdef CONFIG_KEXEC_CORE
++static void crash_vmclear_local_loaded_vmcss(void)
++{
++	int cpu = raw_smp_processor_id();
++	struct loaded_vmcs *v;
++
++	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
++			    loaded_vmcss_on_cpu_link)
++		vmcs_clear(v->vmcs);
++}
++#endif /* CONFIG_KEXEC_CORE */
++
++static void __loaded_vmcs_clear(void *arg)
++{
++	struct loaded_vmcs *loaded_vmcs = arg;
++	int cpu = raw_smp_processor_id();
++
++	if (loaded_vmcs->cpu != cpu)
++		return; /* vcpu migration can race with cpu offline */
++	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
++		per_cpu(current_vmcs, cpu) = NULL;
++
++	vmcs_clear(loaded_vmcs->vmcs);
++	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
++		vmcs_clear(loaded_vmcs->shadow_vmcs);
++
++	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
++
++	/*
++	 * Ensure all writes to loaded_vmcs, including deleting it from its
++	 * current percpu list, complete before setting loaded_vmcs->vcpu to
++	 * -1, otherwise a different cpu can see vcpu == -1 first and add
++	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
++	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
++	 */
++	smp_wmb();
++
++	loaded_vmcs->cpu = -1;
++	loaded_vmcs->launched = 0;
++}
++
++static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
++{
++	int cpu = loaded_vmcs->cpu;
++
++	if (cpu != -1)
++		smp_call_function_single(cpu,
++			 __loaded_vmcs_clear, loaded_vmcs, 1);
++}
++
++static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
++{
++	if (vpid == 0)
++		return true;
++
++	if (cpu_has_vmx_invvpid_individual_addr()) {
++		__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
++		return true;
++	}
++
++	return false;
++}
++
++static inline void vpid_sync_vcpu_single(int vpid)
++{
++	if (vpid == 0)
++		return;
++
++	if (cpu_has_vmx_invvpid_single())
++		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
++}
++
++static inline void vpid_sync_vcpu_global(void)
++{
++	if (cpu_has_vmx_invvpid_global())
++		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
++}
++
++static inline void vpid_sync_context(int vpid)
++{
++	if (cpu_has_vmx_invvpid_single())
++		vpid_sync_vcpu_single(vpid);
++	else
++		vpid_sync_vcpu_global();
++}
++
++static inline void ept_sync_global(void)
++{
++	__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
++}
++
++static inline void ept_sync_context(u64 eptp)
++{
++	if (cpu_has_vmx_invept_context())
++		__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
++	else
++		ept_sync_global();
++}
++
++static __always_inline void vmcs_check16(unsigned long field)
++{
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
++			 "16-bit accessor invalid for 64-bit field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
++			 "16-bit accessor invalid for 64-bit high field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
++			 "16-bit accessor invalid for 32-bit high field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
++			 "16-bit accessor invalid for natural width field");
++}
++
++static __always_inline void vmcs_check32(unsigned long field)
++{
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
++			 "32-bit accessor invalid for 16-bit field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
++			 "32-bit accessor invalid for natural width field");
++}
++
++static __always_inline void vmcs_check64(unsigned long field)
++{
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
++			 "64-bit accessor invalid for 16-bit field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
++			 "64-bit accessor invalid for 64-bit high field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
++			 "64-bit accessor invalid for 32-bit field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
++			 "64-bit accessor invalid for natural width field");
++}
++
++static __always_inline void vmcs_checkl(unsigned long field)
++{
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
++			 "Natural width accessor invalid for 16-bit field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
++			 "Natural width accessor invalid for 64-bit field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
++			 "Natural width accessor invalid for 64-bit high field");
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
++			 "Natural width accessor invalid for 32-bit field");
++}
++
++static __always_inline unsigned long __vmcs_readl(unsigned long field)
++{
++	unsigned long value;
++
++	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
++		      : "=a"(value) : "d"(field) : "cc");
++	return value;
++}
++
++static __always_inline u16 vmcs_read16(unsigned long field)
++{
++	vmcs_check16(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_read16(field);
++	return __vmcs_readl(field);
++}
++
++static __always_inline u32 vmcs_read32(unsigned long field)
++{
++	vmcs_check32(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_read32(field);
++	return __vmcs_readl(field);
++}
++
++static __always_inline u64 vmcs_read64(unsigned long field)
++{
++	vmcs_check64(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_read64(field);
++#ifdef CONFIG_X86_64
++	return __vmcs_readl(field);
++#else
++	return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
++#endif
++}
++
++static __always_inline unsigned long vmcs_readl(unsigned long field)
++{
++	vmcs_checkl(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_read64(field);
++	return __vmcs_readl(field);
++}
++
++static noinline void vmwrite_error(unsigned long field, unsigned long value)
++{
++	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
++	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
++	dump_stack();
++}
++
++static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
++{
++	bool error;
++
++	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na)
++		      : CC_OUT(na) (error) : "a"(value), "d"(field));
++	if (unlikely(error))
++		vmwrite_error(field, value);
++}
++
++static __always_inline void vmcs_write16(unsigned long field, u16 value)
++{
++	vmcs_check16(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_write16(field, value);
++
++	__vmcs_writel(field, value);
++}
++
++static __always_inline void vmcs_write32(unsigned long field, u32 value)
++{
++	vmcs_check32(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_write32(field, value);
++
++	__vmcs_writel(field, value);
++}
++
++static __always_inline void vmcs_write64(unsigned long field, u64 value)
++{
++	vmcs_check64(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_write64(field, value);
++
++	__vmcs_writel(field, value);
++#ifndef CONFIG_X86_64
++	asm volatile ("");
++	__vmcs_writel(field+1, value >> 32);
++#endif
++}
++
++static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
++{
++	vmcs_checkl(field);
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_write64(field, value);
++
++	__vmcs_writel(field, value);
++}
++
++static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
++{
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
++			 "vmcs_clear_bits does not support 64-bit fields");
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_write32(field, evmcs_read32(field) & ~mask);
++
++	__vmcs_writel(field, __vmcs_readl(field) & ~mask);
++}
++
++static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
++{
++        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
++			 "vmcs_set_bits does not support 64-bit fields");
++	if (static_branch_unlikely(&enable_evmcs))
++		return evmcs_write32(field, evmcs_read32(field) | mask);
++
++	__vmcs_writel(field, __vmcs_readl(field) | mask);
++}
++
++static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
++{
++	vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
++}
++
++static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
++{
++	vmcs_write32(VM_ENTRY_CONTROLS, val);
++	vmx->vm_entry_controls_shadow = val;
++}
++
++static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
++{
++	if (vmx->vm_entry_controls_shadow != val)
++		vm_entry_controls_init(vmx, val);
++}
++
++static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
++{
++	return vmx->vm_entry_controls_shadow;
++}
++
++
++static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
++{
++	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
++}
++
++static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
++{
++	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
++}
++
++static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
++{
++	vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
++}
++
++static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
++{
++	vmcs_write32(VM_EXIT_CONTROLS, val);
++	vmx->vm_exit_controls_shadow = val;
++}
++
++static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
++{
++	if (vmx->vm_exit_controls_shadow != val)
++		vm_exit_controls_init(vmx, val);
++}
++
++static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
++{
++	return vmx->vm_exit_controls_shadow;
++}
++
++
++static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
++{
++	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
++}
++
++static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
++{
++	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
++}
++
++static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
++{
++	vmx->segment_cache.bitmask = 0;
++}
++
++static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
++				       unsigned field)
++{
++	bool ret;
++	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
++
++	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
++		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
++		vmx->segment_cache.bitmask = 0;
++	}
++	ret = vmx->segment_cache.bitmask & mask;
++	vmx->segment_cache.bitmask |= mask;
++	return ret;
++}
++
++static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
++{
++	u16 *p = &vmx->segment_cache.seg[seg].selector;
++
++	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
++		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
++	return *p;
++}
++
++static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
++{
++	ulong *p = &vmx->segment_cache.seg[seg].base;
++
++	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
++		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
++	return *p;
++}
++
++static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
++{
++	u32 *p = &vmx->segment_cache.seg[seg].limit;
++
++	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
++		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
++	return *p;
++}
++
++static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
++{
++	u32 *p = &vmx->segment_cache.seg[seg].ar;
++
++	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
++		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
++	return *p;
++}
++
++static void update_exception_bitmap(struct kvm_vcpu *vcpu)
++{
++	u32 eb;
++
++	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
++	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
++	/*
++	 * Guest access to VMware backdoor ports could legitimately
++	 * trigger #GP because of TSS I/O permission bitmap.
++	 * We intercept those #GP and allow access to them anyway
++	 * as VMware does.
++	 */
++	if (enable_vmware_backdoor)
++		eb |= (1u << GP_VECTOR);
++	if ((vcpu->guest_debug &
++	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
++	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
++		eb |= 1u << BP_VECTOR;
++	if (to_vmx(vcpu)->rmode.vm86_active)
++		eb = ~0;
++	if (enable_ept)
++		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
++
++	/* When we are running a nested L2 guest and L1 specified for it a
++	 * certain exception bitmap, we must trap the same exceptions and pass
++	 * them to L1. When running L2, we will only handle the exceptions
++	 * specified above if L1 did not want them.
++	 */
++	if (is_guest_mode(vcpu))
++		eb |= get_vmcs12(vcpu)->exception_bitmap;
++
++	vmcs_write32(EXCEPTION_BITMAP, eb);
++}
++
++/*
++ * Check if MSR is intercepted for currently loaded MSR bitmap.
++ */
++static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
++{
++	unsigned long *msr_bitmap;
++	int f = sizeof(unsigned long);
++
++	if (!cpu_has_vmx_msr_bitmap())
++		return true;
++
++	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
++
++	if (msr <= 0x1fff) {
++		return !!test_bit(msr, msr_bitmap + 0x800 / f);
++	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++		msr &= 0x1fff;
++		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
++	}
++
++	return true;
++}
++
++/*
++ * Check if MSR is intercepted for L01 MSR bitmap.
++ */
++static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
++{
++	unsigned long *msr_bitmap;
++	int f = sizeof(unsigned long);
++
++	if (!cpu_has_vmx_msr_bitmap())
++		return true;
++
++	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
++
++	if (msr <= 0x1fff) {
++		return !!test_bit(msr, msr_bitmap + 0x800 / f);
++	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++		msr &= 0x1fff;
++		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
++	}
++
++	return true;
++}
++
++static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
++		unsigned long entry, unsigned long exit)
++{
++	vm_entry_controls_clearbit(vmx, entry);
++	vm_exit_controls_clearbit(vmx, exit);
++}
++
++static int find_msr(struct vmx_msrs *m, unsigned int msr)
++{
++	unsigned int i;
++
++	for (i = 0; i < m->nr; ++i) {
++		if (m->val[i].index == msr)
++			return i;
++	}
++	return -ENOENT;
++}
++
++static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
++{
++	int i;
++	struct msr_autoload *m = &vmx->msr_autoload;
++
++	switch (msr) {
++	case MSR_EFER:
++		if (cpu_has_load_ia32_efer) {
++			clear_atomic_switch_msr_special(vmx,
++					VM_ENTRY_LOAD_IA32_EFER,
++					VM_EXIT_LOAD_IA32_EFER);
++			return;
++		}
++		break;
++	case MSR_CORE_PERF_GLOBAL_CTRL:
++		if (cpu_has_load_perf_global_ctrl) {
++			clear_atomic_switch_msr_special(vmx,
++					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
++					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
++			return;
++		}
++		break;
++	}
++	i = find_msr(&m->guest, msr);
++	if (i < 0)
++		goto skip_guest;
++	--m->guest.nr;
++	m->guest.val[i] = m->guest.val[m->guest.nr];
++	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
++
++skip_guest:
++	i = find_msr(&m->host, msr);
++	if (i < 0)
++		return;
++
++	--m->host.nr;
++	m->host.val[i] = m->host.val[m->host.nr];
++	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
++}
++
++static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
++		unsigned long entry, unsigned long exit,
++		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
++		u64 guest_val, u64 host_val)
++{
++	vmcs_write64(guest_val_vmcs, guest_val);
++	vmcs_write64(host_val_vmcs, host_val);
++	vm_entry_controls_setbit(vmx, entry);
++	vm_exit_controls_setbit(vmx, exit);
++}
++
++static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
++				  u64 guest_val, u64 host_val, bool entry_only)
++{
++	int i, j = 0;
++	struct msr_autoload *m = &vmx->msr_autoload;
++
++	switch (msr) {
++	case MSR_EFER:
++		if (cpu_has_load_ia32_efer) {
++			add_atomic_switch_msr_special(vmx,
++					VM_ENTRY_LOAD_IA32_EFER,
++					VM_EXIT_LOAD_IA32_EFER,
++					GUEST_IA32_EFER,
++					HOST_IA32_EFER,
++					guest_val, host_val);
++			return;
++		}
++		break;
++	case MSR_CORE_PERF_GLOBAL_CTRL:
++		if (cpu_has_load_perf_global_ctrl) {
++			add_atomic_switch_msr_special(vmx,
++					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
++					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
++					GUEST_IA32_PERF_GLOBAL_CTRL,
++					HOST_IA32_PERF_GLOBAL_CTRL,
++					guest_val, host_val);
++			return;
++		}
++		break;
++	case MSR_IA32_PEBS_ENABLE:
++		/* PEBS needs a quiescent period after being disabled (to write
++		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
++		 * provide that period, so a CPU could write host's record into
++		 * guest's memory.
++		 */
++		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
++	}
++
++	i = find_msr(&m->guest, msr);
++	if (!entry_only)
++		j = find_msr(&m->host, msr);
++
++	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
++		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
++		printk_once(KERN_WARNING "Not enough msr switch entries. "
++				"Can't add msr %x\n", msr);
++		return;
++	}
++	if (i < 0) {
++		i = m->guest.nr++;
++		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
++	}
++	m->guest.val[i].index = msr;
++	m->guest.val[i].value = guest_val;
++
++	if (entry_only)
++		return;
++
++	if (j < 0) {
++		j = m->host.nr++;
++		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
++	}
++	m->host.val[j].index = msr;
++	m->host.val[j].value = host_val;
++}
++
++static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
++{
++	u64 guest_efer = vmx->vcpu.arch.efer;
++	u64 ignore_bits = 0;
++
++	/* Shadow paging assumes NX to be available.  */
++	if (!enable_ept)
++		guest_efer |= EFER_NX;
++
++	/*
++	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
++	 */
++	ignore_bits |= EFER_SCE;
++#ifdef CONFIG_X86_64
++	ignore_bits |= EFER_LMA | EFER_LME;
++	/* SCE is meaningful only in long mode on Intel */
++	if (guest_efer & EFER_LMA)
++		ignore_bits &= ~(u64)EFER_SCE;
++#endif
++
++	clear_atomic_switch_msr(vmx, MSR_EFER);
++
++	/*
++	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
++	 * On CPUs that support "load IA32_EFER", always switch EFER
++	 * atomically, since it's faster than switching it manually.
++	 */
++	if (cpu_has_load_ia32_efer ||
++	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
++		if (!(guest_efer & EFER_LMA))
++			guest_efer &= ~EFER_LME;
++		if (guest_efer != host_efer)
++			add_atomic_switch_msr(vmx, MSR_EFER,
++					      guest_efer, host_efer, false);
++		return false;
++	} else {
++		guest_efer &= ~ignore_bits;
++		guest_efer |= host_efer & ignore_bits;
++
++		vmx->guest_msrs[efer_offset].data = guest_efer;
++		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
++
++		return true;
++	}
++}
++
++#ifdef CONFIG_X86_32
++/*
++ * On 32-bit kernels, VM exits still load the FS and GS bases from the
++ * VMCS rather than the segment table.  KVM uses this helper to figure
++ * out the current bases to poke them into the VMCS before entry.
++ */
++static unsigned long segment_base(u16 selector)
++{
++	struct desc_struct *table;
++	unsigned long v;
++
++	if (!(selector & ~SEGMENT_RPL_MASK))
++		return 0;
++
++	table = get_current_gdt_ro();
++
++	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
++		u16 ldt_selector = kvm_read_ldt();
++
++		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
++			return 0;
++
++		table = (struct desc_struct *)segment_base(ldt_selector);
++	}
++	v = get_desc_base(&table[selector >> 3]);
++	return v;
++}
++#endif
++
++static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmcs_host_state *host_state;
++#ifdef CONFIG_X86_64
++	int cpu = raw_smp_processor_id();
++#endif
++	unsigned long fs_base, gs_base;
++	u16 fs_sel, gs_sel;
++	int i;
++
++	vmx->req_immediate_exit = false;
++
++	/*
++	 * Note that guest MSRs to be saved/restored can also be changed
++	 * when guest state is loaded. This happens when guest transitions
++	 * to/from long-mode by setting MSR_EFER.LMA.
++	 */
++	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
++		vmx->guest_msrs_dirty = false;
++		for (i = 0; i < vmx->save_nmsrs; ++i)
++			kvm_set_shared_msr(vmx->guest_msrs[i].index,
++					   vmx->guest_msrs[i].data,
++					   vmx->guest_msrs[i].mask);
++
++	}
++
++	if (vmx->loaded_cpu_state)
++		return;
++
++	vmx->loaded_cpu_state = vmx->loaded_vmcs;
++	host_state = &vmx->loaded_cpu_state->host_state;
++
++	/*
++	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
++	 * allow segment selectors with cpl > 0 or ti == 1.
++	 */
++	host_state->ldt_sel = kvm_read_ldt();
++
++#ifdef CONFIG_X86_64
++	savesegment(ds, host_state->ds_sel);
++	savesegment(es, host_state->es_sel);
++
++	gs_base = cpu_kernelmode_gs_base(cpu);
++	if (likely(is_64bit_mm(current->mm))) {
++		save_fsgs_for_kvm();
++		fs_sel = current->thread.fsindex;
++		gs_sel = current->thread.gsindex;
++		fs_base = current->thread.fsbase;
++		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
++	} else {
++		savesegment(fs, fs_sel);
++		savesegment(gs, gs_sel);
++		fs_base = read_msr(MSR_FS_BASE);
++		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
++	}
++
++	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
++#else
++	savesegment(fs, fs_sel);
++	savesegment(gs, gs_sel);
++	fs_base = segment_base(fs_sel);
++	gs_base = segment_base(gs_sel);
++#endif
++
++	if (unlikely(fs_sel != host_state->fs_sel)) {
++		if (!(fs_sel & 7))
++			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
++		else
++			vmcs_write16(HOST_FS_SELECTOR, 0);
++		host_state->fs_sel = fs_sel;
++	}
++	if (unlikely(gs_sel != host_state->gs_sel)) {
++		if (!(gs_sel & 7))
++			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
++		else
++			vmcs_write16(HOST_GS_SELECTOR, 0);
++		host_state->gs_sel = gs_sel;
++	}
++	if (unlikely(fs_base != host_state->fs_base)) {
++		vmcs_writel(HOST_FS_BASE, fs_base);
++		host_state->fs_base = fs_base;
++	}
++	if (unlikely(gs_base != host_state->gs_base)) {
++		vmcs_writel(HOST_GS_BASE, gs_base);
++		host_state->gs_base = gs_base;
++	}
++}
++
++static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
++{
++	struct vmcs_host_state *host_state;
++
++	if (!vmx->loaded_cpu_state)
++		return;
++
++	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
++	host_state = &vmx->loaded_cpu_state->host_state;
++
++	++vmx->vcpu.stat.host_state_reload;
++	vmx->loaded_cpu_state = NULL;
++
++#ifdef CONFIG_X86_64
++	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
++#endif
++	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
++		kvm_load_ldt(host_state->ldt_sel);
++#ifdef CONFIG_X86_64
++		load_gs_index(host_state->gs_sel);
++#else
++		loadsegment(gs, host_state->gs_sel);
++#endif
++	}
++	if (host_state->fs_sel & 7)
++		loadsegment(fs, host_state->fs_sel);
++#ifdef CONFIG_X86_64
++	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
++		loadsegment(ds, host_state->ds_sel);
++		loadsegment(es, host_state->es_sel);
++	}
++#endif
++	invalidate_tss_limit();
++#ifdef CONFIG_X86_64
++	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
++#endif
++	load_fixmap_gdt(raw_smp_processor_id());
++}
++
++#ifdef CONFIG_X86_64
++static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
++{
++	preempt_disable();
++	if (vmx->loaded_cpu_state)
++		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
++	preempt_enable();
++	return vmx->msr_guest_kernel_gs_base;
++}
++
++static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
++{
++	preempt_disable();
++	if (vmx->loaded_cpu_state)
++		wrmsrl(MSR_KERNEL_GS_BASE, data);
++	preempt_enable();
++	vmx->msr_guest_kernel_gs_base = data;
++}
++#endif
++
++static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
++{
++	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++	struct pi_desc old, new;
++	unsigned int dest;
++
++	/*
++	 * In case of hot-plug or hot-unplug, we may have to undo
++	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
++	 * always keep PI.NDST up to date for simplicity: it makes the
++	 * code easier, and CPU migration is not a fast path.
++	 */
++	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
++		return;
++
++	/*
++	 * First handle the simple case where no cmpxchg is necessary; just
++	 * allow posting non-urgent interrupts.
++	 *
++	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
++	 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
++	 * expects the VCPU to be on the blocked_vcpu_list that matches
++	 * PI.NDST.
++	 */
++	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
++	    vcpu->cpu == cpu) {
++		pi_clear_sn(pi_desc);
++		return;
++	}
++
++	/* The full case.  */
++	do {
++		old.control = new.control = pi_desc->control;
++
++		dest = cpu_physical_id(cpu);
++
++		if (x2apic_enabled())
++			new.ndst = dest;
++		else
++			new.ndst = (dest << 8) & 0xFF00;
++
++		new.sn = 0;
++	} while (cmpxchg64(&pi_desc->control, old.control,
++			   new.control) != old.control);
++}
++
++static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
++{
++	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
++	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
++}
++
++/*
++ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
++ * vcpu mutex is already taken.
++ */
++static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
++
++	if (!already_loaded) {
++		loaded_vmcs_clear(vmx->loaded_vmcs);
++		local_irq_disable();
++
++		/*
++		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
++		 * this cpu's percpu list, otherwise it may not yet be deleted
++		 * from its previous cpu's percpu list.  Pairs with the
++		 * smb_wmb() in __loaded_vmcs_clear().
++		 */
++		smp_rmb();
++
++		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
++			 &per_cpu(loaded_vmcss_on_cpu, cpu));
++		local_irq_enable();
++	}
++
++	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
++		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
++		vmcs_load(vmx->loaded_vmcs->vmcs);
++		indirect_branch_prediction_barrier();
++	}
++
++	if (!already_loaded) {
++		void *gdt = get_current_gdt_ro();
++		unsigned long sysenter_esp;
++
++		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++
++		/*
++		 * Linux uses per-cpu TSS and GDT, so set these when switching
++		 * processors.  See 22.2.4.
++		 */
++		vmcs_writel(HOST_TR_BASE,
++			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
++		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
++
++		/*
++		 * VM exits change the host TR limit to 0x67 after a VM
++		 * exit.  This is okay, since 0x67 covers everything except
++		 * the IO bitmap and have have code to handle the IO bitmap
++		 * being lost after a VM exit.
++		 */
++		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
++
++		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
++		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
++
++		vmx->loaded_vmcs->cpu = cpu;
++	}
++
++	/* Setup TSC multiplier */
++	if (kvm_has_tsc_control &&
++	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
++		decache_tsc_multiplier(vmx);
++
++	vmx_vcpu_pi_load(vcpu, cpu);
++	vmx->host_pkru = read_pkru();
++	vmx->host_debugctlmsr = get_debugctlmsr();
++}
++
++static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
++{
++	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
++		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
++		!kvm_vcpu_apicv_active(vcpu))
++		return;
++
++	/* Set SN when the vCPU is preempted */
++	if (vcpu->preempted)
++		pi_set_sn(pi_desc);
++}
++
++static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
++{
++	vmx_vcpu_pi_put(vcpu);
++
++	vmx_prepare_switch_to_host(to_vmx(vcpu));
++}
++
++static bool emulation_required(struct kvm_vcpu *vcpu)
++{
++	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
++}
++
++static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
++
++/*
++ * Return the cr0 value that a nested guest would read. This is a combination
++ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
++ * its hypervisor (cr0_read_shadow).
++ */
++static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
++{
++	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
++		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
++}
++static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
++{
++	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
++		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
++}
++
++static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
++{
++	unsigned long rflags, save_rflags;
++
++	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
++		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
++		rflags = vmcs_readl(GUEST_RFLAGS);
++		if (to_vmx(vcpu)->rmode.vm86_active) {
++			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
++			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
++			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
++		}
++		to_vmx(vcpu)->rflags = rflags;
++	}
++	return to_vmx(vcpu)->rflags;
++}
++
++static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
++{
++	unsigned long old_rflags = vmx_get_rflags(vcpu);
++
++	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
++	to_vmx(vcpu)->rflags = rflags;
++	if (to_vmx(vcpu)->rmode.vm86_active) {
++		to_vmx(vcpu)->rmode.save_rflags = rflags;
++		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
++	}
++	vmcs_writel(GUEST_RFLAGS, rflags);
++
++	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
++		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
++}
++
++static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
++{
++	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
++	int ret = 0;
++
++	if (interruptibility & GUEST_INTR_STATE_STI)
++		ret |= KVM_X86_SHADOW_INT_STI;
++	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
++		ret |= KVM_X86_SHADOW_INT_MOV_SS;
++
++	return ret;
++}
++
++static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
++{
++	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
++	u32 interruptibility = interruptibility_old;
++
++	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
++
++	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
++		interruptibility |= GUEST_INTR_STATE_MOV_SS;
++	else if (mask & KVM_X86_SHADOW_INT_STI)
++		interruptibility |= GUEST_INTR_STATE_STI;
++
++	if ((interruptibility != interruptibility_old))
++		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
++}
++
++static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
++{
++	unsigned long rip;
++
++	rip = kvm_rip_read(vcpu);
++	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++	kvm_rip_write(vcpu, rip);
++
++	/* skipping an emulated instruction also counts */
++	vmx_set_interrupt_shadow(vcpu, 0);
++}
++
++static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
++					       unsigned long exit_qual)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	unsigned int nr = vcpu->arch.exception.nr;
++	u32 intr_info = nr | INTR_INFO_VALID_MASK;
++
++	if (vcpu->arch.exception.has_error_code) {
++		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
++		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
++	}
++
++	if (kvm_exception_is_soft(nr))
++		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
++	else
++		intr_info |= INTR_TYPE_HARD_EXCEPTION;
++
++	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
++	    vmx_get_nmi_mask(vcpu))
++		intr_info |= INTR_INFO_UNBLOCK_NMI;
++
++	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
++}
++
++/*
++ * KVM wants to inject page-faults which it got to the guest. This function
++ * checks whether in a nested guest, we need to inject them to L1 or L2.
++ */
++static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	unsigned int nr = vcpu->arch.exception.nr;
++
++	if (nr == PF_VECTOR) {
++		if (vcpu->arch.exception.nested_apf) {
++			*exit_qual = vcpu->arch.apf.nested_apf_token;
++			return 1;
++		}
++		/*
++		 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
++		 * The fix is to add the ancillary datum (CR2 or DR6) to structs
++		 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
++		 * can be written only when inject_pending_event runs.  This should be
++		 * conditional on a new capability---if the capability is disabled,
++		 * kvm_multiple_exception would write the ancillary information to
++		 * CR2 or DR6, for backwards ABI-compatibility.
++		 */
++		if (nested_vmx_is_page_fault_vmexit(vmcs12,
++						    vcpu->arch.exception.error_code)) {
++			*exit_qual = vcpu->arch.cr2;
++			return 1;
++		}
++	} else {
++		if (vmcs12->exception_bitmap & (1u << nr)) {
++			if (nr == DB_VECTOR) {
++				*exit_qual = vcpu->arch.dr6;
++				*exit_qual &= ~(DR6_FIXED_1 | DR6_BT);
++				*exit_qual ^= DR6_RTM;
++			} else {
++				*exit_qual = 0;
++			}
++			return 1;
++		}
++	}
++
++	return 0;
++}
++
++static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
++{
++	/*
++	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
++	 * explicitly skip the instruction because if the HLT state is set,
++	 * then the instruction is already executing and RIP has already been
++	 * advanced.
++	 */
++	if (kvm_hlt_in_guest(vcpu->kvm) &&
++			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
++		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
++}
++
++static void vmx_queue_exception(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned nr = vcpu->arch.exception.nr;
++	bool has_error_code = vcpu->arch.exception.has_error_code;
++	u32 error_code = vcpu->arch.exception.error_code;
++	u32 intr_info = nr | INTR_INFO_VALID_MASK;
++
++	if (has_error_code) {
++		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
++		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
++	}
++
++	if (vmx->rmode.vm86_active) {
++		int inc_eip = 0;
++		if (kvm_exception_is_soft(nr))
++			inc_eip = vcpu->arch.event_exit_inst_len;
++		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
++			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
++		return;
++	}
++
++	WARN_ON_ONCE(vmx->emulation_required);
++
++	if (kvm_exception_is_soft(nr)) {
++		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
++			     vmx->vcpu.arch.event_exit_inst_len);
++		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
++	} else
++		intr_info |= INTR_TYPE_HARD_EXCEPTION;
++
++	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
++
++	vmx_clear_hlt(vcpu);
++}
++
++static bool vmx_rdtscp_supported(void)
++{
++	return cpu_has_vmx_rdtscp();
++}
++
++static bool vmx_invpcid_supported(void)
++{
++	return cpu_has_vmx_invpcid();
++}
++
++/*
++ * Swap MSR entry in host/guest MSR entry array.
++ */
++static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
++{
++	struct shared_msr_entry tmp;
++
++	tmp = vmx->guest_msrs[to];
++	vmx->guest_msrs[to] = vmx->guest_msrs[from];
++	vmx->guest_msrs[from] = tmp;
++}
++
++/*
++ * Set up the vmcs to automatically save and restore system
++ * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
++ * mode, as fiddling with msrs is very expensive.
++ */
++static void setup_msrs(struct vcpu_vmx *vmx)
++{
++	int save_nmsrs, index;
++
++	save_nmsrs = 0;
++#ifdef CONFIG_X86_64
++	if (is_long_mode(&vmx->vcpu)) {
++		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
++		if (index >= 0)
++			move_msr_up(vmx, index, save_nmsrs++);
++		index = __find_msr_index(vmx, MSR_LSTAR);
++		if (index >= 0)
++			move_msr_up(vmx, index, save_nmsrs++);
++		index = __find_msr_index(vmx, MSR_CSTAR);
++		if (index >= 0)
++			move_msr_up(vmx, index, save_nmsrs++);
++		/*
++		 * MSR_STAR is only needed on long mode guests, and only
++		 * if efer.sce is enabled.
++		 */
++		index = __find_msr_index(vmx, MSR_STAR);
++		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
++			move_msr_up(vmx, index, save_nmsrs++);
++	}
++#endif
++	index = __find_msr_index(vmx, MSR_EFER);
++	if (index >= 0 && update_transition_efer(vmx, index))
++		move_msr_up(vmx, index, save_nmsrs++);
++	index = __find_msr_index(vmx, MSR_TSC_AUX);
++	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
++		move_msr_up(vmx, index, save_nmsrs++);
++
++	vmx->save_nmsrs = save_nmsrs;
++	vmx->guest_msrs_dirty = true;
++
++	if (cpu_has_vmx_msr_bitmap())
++		vmx_update_msr_bitmap(&vmx->vcpu);
++}
++
++static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++	if (is_guest_mode(vcpu) &&
++	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
++		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
++
++	return vcpu->arch.tsc_offset;
++}
++
++static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
++{
++	u64 active_offset = offset;
++	if (is_guest_mode(vcpu)) {
++		/*
++		 * We're here if L1 chose not to trap WRMSR to TSC. According
++		 * to the spec, this should set L1's TSC; The offset that L1
++		 * set for L2 remains unchanged, and still needs to be added
++		 * to the newly set TSC to get L2's TSC.
++		 */
++		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++		if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING))
++			active_offset += vmcs12->tsc_offset;
++	} else {
++		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
++					   vmcs_read64(TSC_OFFSET), offset);
++	}
++
++	vmcs_write64(TSC_OFFSET, active_offset);
++	return active_offset;
++}
++
++/*
++ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
++ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
++ * all guests if the "nested" module option is off, and can also be disabled
++ * for a single guest by disabling its VMX cpuid bit.
++ */
++static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
++{
++	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
++}
++
++/*
++ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
++ * returned for the various VMX controls MSRs when nested VMX is enabled.
++ * The same values should also be used to verify that vmcs12 control fields are
++ * valid during nested entry from L1 to L2.
++ * Each of these control msrs has a low and high 32-bit half: A low bit is on
++ * if the corresponding bit in the (32-bit) control field *must* be on, and a
++ * bit in the high half is on if the corresponding bit in the control field
++ * may be on. See also vmx_control_verify().
++ */
++static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
++{
++	if (!nested) {
++		memset(msrs, 0, sizeof(*msrs));
++		return;
++	}
++
++	/*
++	 * Note that as a general rule, the high half of the MSRs (bits in
++	 * the control fields which may be 1) should be initialized by the
++	 * intersection of the underlying hardware's MSR (i.e., features which
++	 * can be supported) and the list of features we want to expose -
++	 * because they are known to be properly supported in our code.
++	 * Also, usually, the low half of the MSRs (bits which must be 1) can
++	 * be set to 0, meaning that L1 may turn off any of these bits. The
++	 * reason is that if one of these bits is necessary, it will appear
++	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
++	 * fields of vmcs01 and vmcs02, will turn these bits off - and
++	 * nested_vmx_exit_reflected() will not pass related exits to L1.
++	 * These rules have exceptions below.
++	 */
++
++	/* pin-based controls */
++	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
++		msrs->pinbased_ctls_low,
++		msrs->pinbased_ctls_high);
++	msrs->pinbased_ctls_low |=
++		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
++	msrs->pinbased_ctls_high &=
++		PIN_BASED_EXT_INTR_MASK |
++		PIN_BASED_NMI_EXITING |
++		PIN_BASED_VIRTUAL_NMIS |
++		(apicv ? PIN_BASED_POSTED_INTR : 0);
++	msrs->pinbased_ctls_high |=
++		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
++		PIN_BASED_VMX_PREEMPTION_TIMER;
++
++	/* exit controls */
++	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
++		msrs->exit_ctls_low,
++		msrs->exit_ctls_high);
++	msrs->exit_ctls_low =
++		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
++
++	msrs->exit_ctls_high &=
++#ifdef CONFIG_X86_64
++		VM_EXIT_HOST_ADDR_SPACE_SIZE |
++#endif
++		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
++	msrs->exit_ctls_high |=
++		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
++		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
++		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
++
++	/* We support free control of debug control saving. */
++	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
++
++	/* entry controls */
++	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
++		msrs->entry_ctls_low,
++		msrs->entry_ctls_high);
++	msrs->entry_ctls_low =
++		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
++	msrs->entry_ctls_high &=
++#ifdef CONFIG_X86_64
++		VM_ENTRY_IA32E_MODE |
++#endif
++		VM_ENTRY_LOAD_IA32_PAT;
++	msrs->entry_ctls_high |=
++		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
++
++	/* We support free control of debug control loading. */
++	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
++
++	/* cpu-based controls */
++	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
++		msrs->procbased_ctls_low,
++		msrs->procbased_ctls_high);
++	msrs->procbased_ctls_low =
++		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
++	msrs->procbased_ctls_high &=
++		CPU_BASED_VIRTUAL_INTR_PENDING |
++		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
++		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
++		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
++		CPU_BASED_CR3_STORE_EXITING |
++#ifdef CONFIG_X86_64
++		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
++#endif
++		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
++		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
++		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
++		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
++		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
++	/*
++	 * We can allow some features even when not supported by the
++	 * hardware. For example, L1 can specify an MSR bitmap - and we
++	 * can use it to avoid exits to L1 - even when L0 runs L2
++	 * without MSR bitmaps.
++	 */
++	msrs->procbased_ctls_high |=
++		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
++		CPU_BASED_USE_MSR_BITMAPS;
++
++	/* We support free control of CR3 access interception. */
++	msrs->procbased_ctls_low &=
++		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
++
++	/*
++	 * secondary cpu-based controls.  Do not include those that
++	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
++	 */
++	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
++		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
++		      msrs->secondary_ctls_low,
++		      msrs->secondary_ctls_high);
++
++	msrs->secondary_ctls_low = 0;
++	msrs->secondary_ctls_high &=
++		SECONDARY_EXEC_DESC |
++		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++		SECONDARY_EXEC_APIC_REGISTER_VIRT |
++		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
++		SECONDARY_EXEC_WBINVD_EXITING;
++
++	/*
++	 * We can emulate "VMCS shadowing," even if the hardware
++	 * doesn't support it.
++	 */
++	msrs->secondary_ctls_high |=
++		SECONDARY_EXEC_SHADOW_VMCS;
++
++	if (enable_ept) {
++		/* nested EPT: emulate EPT also to L1 */
++		msrs->secondary_ctls_high |=
++			SECONDARY_EXEC_ENABLE_EPT;
++		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
++			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
++		if (cpu_has_vmx_ept_execute_only())
++			msrs->ept_caps |=
++				VMX_EPT_EXECUTE_ONLY_BIT;
++		msrs->ept_caps &= vmx_capability.ept;
++		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
++			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
++			VMX_EPT_1GB_PAGE_BIT;
++		if (enable_ept_ad_bits) {
++			msrs->secondary_ctls_high |=
++				SECONDARY_EXEC_ENABLE_PML;
++			msrs->ept_caps |= VMX_EPT_AD_BIT;
++		}
++	}
++
++	if (cpu_has_vmx_vmfunc()) {
++		msrs->secondary_ctls_high |=
++			SECONDARY_EXEC_ENABLE_VMFUNC;
++		/*
++		 * Advertise EPTP switching unconditionally
++		 * since we emulate it
++		 */
++		if (enable_ept)
++			msrs->vmfunc_controls =
++				VMX_VMFUNC_EPTP_SWITCHING;
++	}
++
++	/*
++	 * Old versions of KVM use the single-context version without
++	 * checking for support, so declare that it is supported even
++	 * though it is treated as global context.  The alternative is
++	 * not failing the single-context invvpid, and it is worse.
++	 */
++	if (enable_vpid) {
++		msrs->secondary_ctls_high |=
++			SECONDARY_EXEC_ENABLE_VPID;
++		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
++			VMX_VPID_EXTENT_SUPPORTED_MASK;
++	}
++
++	if (enable_unrestricted_guest)
++		msrs->secondary_ctls_high |=
++			SECONDARY_EXEC_UNRESTRICTED_GUEST;
++
++	if (flexpriority_enabled)
++		msrs->secondary_ctls_high |=
++			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++
++	/* miscellaneous data */
++	rdmsr(MSR_IA32_VMX_MISC,
++		msrs->misc_low,
++		msrs->misc_high);
++	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
++	msrs->misc_low |=
++		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
++		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
++		VMX_MISC_ACTIVITY_HLT;
++	msrs->misc_high = 0;
++
++	/*
++	 * This MSR reports some information about VMX support. We
++	 * should return information about the VMX we emulate for the
++	 * guest, and the VMCS structure we give it - not about the
++	 * VMX support of the underlying hardware.
++	 */
++	msrs->basic =
++		VMCS12_REVISION |
++		VMX_BASIC_TRUE_CTLS |
++		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
++		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
++
++	if (cpu_has_vmx_basic_inout())
++		msrs->basic |= VMX_BASIC_INOUT;
++
++	/*
++	 * These MSRs specify bits which the guest must keep fixed on
++	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
++	 * We picked the standard core2 setting.
++	 */
++#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
++#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
++	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
++	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
++
++	/* These MSRs specify bits which the guest must keep fixed off. */
++	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
++	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
++
++	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
++	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
++}
++
++/*
++ * if fixed0[i] == 1: val[i] must be 1
++ * if fixed1[i] == 0: val[i] must be 0
++ */
++static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
++{
++	return ((val & fixed1) | fixed0) == val;
++}
++
++static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
++{
++	return fixed_bits_valid(control, low, high);
++}
++
++static inline u64 vmx_control_msr(u32 low, u32 high)
++{
++	return low | ((u64)high << 32);
++}
++
++static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
++{
++	superset &= mask;
++	subset &= mask;
++
++	return (superset | subset) == superset;
++}
++
++static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
++{
++	const u64 feature_and_reserved =
++		/* feature (except bit 48; see below) */
++		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
++		/* reserved */
++		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
++	u64 vmx_basic = vmx->nested.msrs.basic;
++
++	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
++		return -EINVAL;
++
++	/*
++	 * KVM does not emulate a version of VMX that constrains physical
++	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
++	 */
++	if (data & BIT_ULL(48))
++		return -EINVAL;
++
++	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
++	    vmx_basic_vmcs_revision_id(data))
++		return -EINVAL;
++
++	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
++		return -EINVAL;
++
++	vmx->nested.msrs.basic = data;
++	return 0;
++}
++
++static int
++vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
++{
++	u64 supported;
++	u32 *lowp, *highp;
++
++	switch (msr_index) {
++	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
++		lowp = &vmx->nested.msrs.pinbased_ctls_low;
++		highp = &vmx->nested.msrs.pinbased_ctls_high;
++		break;
++	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
++		lowp = &vmx->nested.msrs.procbased_ctls_low;
++		highp = &vmx->nested.msrs.procbased_ctls_high;
++		break;
++	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
++		lowp = &vmx->nested.msrs.exit_ctls_low;
++		highp = &vmx->nested.msrs.exit_ctls_high;
++		break;
++	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
++		lowp = &vmx->nested.msrs.entry_ctls_low;
++		highp = &vmx->nested.msrs.entry_ctls_high;
++		break;
++	case MSR_IA32_VMX_PROCBASED_CTLS2:
++		lowp = &vmx->nested.msrs.secondary_ctls_low;
++		highp = &vmx->nested.msrs.secondary_ctls_high;
++		break;
++	default:
++		BUG();
++	}
++
++	supported = vmx_control_msr(*lowp, *highp);
++
++	/* Check must-be-1 bits are still 1. */
++	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
++		return -EINVAL;
++
++	/* Check must-be-0 bits are still 0. */
++	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
++		return -EINVAL;
++
++	*lowp = data;
++	*highp = data >> 32;
++	return 0;
++}
++
++static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
++{
++	const u64 feature_and_reserved_bits =
++		/* feature */
++		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
++		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
++		/* reserved */
++		GENMASK_ULL(13, 9) | BIT_ULL(31);
++	u64 vmx_misc;
++
++	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
++				   vmx->nested.msrs.misc_high);
++
++	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
++		return -EINVAL;
++
++	if ((vmx->nested.msrs.pinbased_ctls_high &
++	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
++	    vmx_misc_preemption_timer_rate(data) !=
++	    vmx_misc_preemption_timer_rate(vmx_misc))
++		return -EINVAL;
++
++	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
++		return -EINVAL;
++
++	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
++		return -EINVAL;
++
++	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
++		return -EINVAL;
++
++	vmx->nested.msrs.misc_low = data;
++	vmx->nested.msrs.misc_high = data >> 32;
++
++	/*
++	 * If L1 has read-only VM-exit information fields, use the
++	 * less permissive vmx_vmwrite_bitmap to specify write
++	 * permissions for the shadow VMCS.
++	 */
++	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
++		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
++
++	return 0;
++}
++
++static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
++{
++	u64 vmx_ept_vpid_cap;
++
++	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
++					   vmx->nested.msrs.vpid_caps);
++
++	/* Every bit is either reserved or a feature bit. */
++	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
++		return -EINVAL;
++
++	vmx->nested.msrs.ept_caps = data;
++	vmx->nested.msrs.vpid_caps = data >> 32;
++	return 0;
++}
++
++static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
++{
++	u64 *msr;
++
++	switch (msr_index) {
++	case MSR_IA32_VMX_CR0_FIXED0:
++		msr = &vmx->nested.msrs.cr0_fixed0;
++		break;
++	case MSR_IA32_VMX_CR4_FIXED0:
++		msr = &vmx->nested.msrs.cr4_fixed0;
++		break;
++	default:
++		BUG();
++	}
++
++	/*
++	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
++	 * must be 1 in the restored value.
++	 */
++	if (!is_bitwise_subset(data, *msr, -1ULL))
++		return -EINVAL;
++
++	*msr = data;
++	return 0;
++}
++
++/*
++ * Called when userspace is restoring VMX MSRs.
++ *
++ * Returns 0 on success, non-0 otherwise.
++ */
++static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	/*
++	 * Don't allow changes to the VMX capability MSRs while the vCPU
++	 * is in VMX operation.
++	 */
++	if (vmx->nested.vmxon)
++		return -EBUSY;
++
++	switch (msr_index) {
++	case MSR_IA32_VMX_BASIC:
++		return vmx_restore_vmx_basic(vmx, data);
++	case MSR_IA32_VMX_PINBASED_CTLS:
++	case MSR_IA32_VMX_PROCBASED_CTLS:
++	case MSR_IA32_VMX_EXIT_CTLS:
++	case MSR_IA32_VMX_ENTRY_CTLS:
++		/*
++		 * The "non-true" VMX capability MSRs are generated from the
++		 * "true" MSRs, so we do not support restoring them directly.
++		 *
++		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
++		 * should restore the "true" MSRs with the must-be-1 bits
++		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
++		 * DEFAULT SETTINGS".
++		 */
++		return -EINVAL;
++	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
++	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
++	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
++	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
++	case MSR_IA32_VMX_PROCBASED_CTLS2:
++		return vmx_restore_control_msr(vmx, msr_index, data);
++	case MSR_IA32_VMX_MISC:
++		return vmx_restore_vmx_misc(vmx, data);
++	case MSR_IA32_VMX_CR0_FIXED0:
++	case MSR_IA32_VMX_CR4_FIXED0:
++		return vmx_restore_fixed0_msr(vmx, msr_index, data);
++	case MSR_IA32_VMX_CR0_FIXED1:
++	case MSR_IA32_VMX_CR4_FIXED1:
++		/*
++		 * These MSRs are generated based on the vCPU's CPUID, so we
++		 * do not support restoring them directly.
++		 */
++		return -EINVAL;
++	case MSR_IA32_VMX_EPT_VPID_CAP:
++		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
++	case MSR_IA32_VMX_VMCS_ENUM:
++		vmx->nested.msrs.vmcs_enum = data;
++		return 0;
++	default:
++		/*
++		 * The rest of the VMX capability MSRs do not support restore.
++		 */
++		return -EINVAL;
++	}
++}
++
++/* Returns 0 on success, non-0 otherwise. */
++static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
++{
++	switch (msr_index) {
++	case MSR_IA32_VMX_BASIC:
++		*pdata = msrs->basic;
++		break;
++	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
++	case MSR_IA32_VMX_PINBASED_CTLS:
++		*pdata = vmx_control_msr(
++			msrs->pinbased_ctls_low,
++			msrs->pinbased_ctls_high);
++		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
++			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
++		break;
++	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
++	case MSR_IA32_VMX_PROCBASED_CTLS:
++		*pdata = vmx_control_msr(
++			msrs->procbased_ctls_low,
++			msrs->procbased_ctls_high);
++		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
++			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
++		break;
++	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
++	case MSR_IA32_VMX_EXIT_CTLS:
++		*pdata = vmx_control_msr(
++			msrs->exit_ctls_low,
++			msrs->exit_ctls_high);
++		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
++			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
++		break;
++	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
++	case MSR_IA32_VMX_ENTRY_CTLS:
++		*pdata = vmx_control_msr(
++			msrs->entry_ctls_low,
++			msrs->entry_ctls_high);
++		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
++			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
++		break;
++	case MSR_IA32_VMX_MISC:
++		*pdata = vmx_control_msr(
++			msrs->misc_low,
++			msrs->misc_high);
++		break;
++	case MSR_IA32_VMX_CR0_FIXED0:
++		*pdata = msrs->cr0_fixed0;
++		break;
++	case MSR_IA32_VMX_CR0_FIXED1:
++		*pdata = msrs->cr0_fixed1;
++		break;
++	case MSR_IA32_VMX_CR4_FIXED0:
++		*pdata = msrs->cr4_fixed0;
++		break;
++	case MSR_IA32_VMX_CR4_FIXED1:
++		*pdata = msrs->cr4_fixed1;
++		break;
++	case MSR_IA32_VMX_VMCS_ENUM:
++		*pdata = msrs->vmcs_enum;
++		break;
++	case MSR_IA32_VMX_PROCBASED_CTLS2:
++		*pdata = vmx_control_msr(
++			msrs->secondary_ctls_low,
++			msrs->secondary_ctls_high);
++		break;
++	case MSR_IA32_VMX_EPT_VPID_CAP:
++		*pdata = msrs->ept_caps |
++			((u64)msrs->vpid_caps << 32);
++		break;
++	case MSR_IA32_VMX_VMFUNC:
++		*pdata = msrs->vmfunc_controls;
++		break;
++	default:
++		return 1;
++	}
++
++	return 0;
++}
++
++static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
++						 uint64_t val)
++{
++	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
++
++	return !(val & ~valid_bits);
++}
++
++static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
++{
++	switch (msr->index) {
++	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++		if (!nested)
++			return 1;
++		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
++	default:
++		return 1;
++	}
++
++	return 0;
++}
++
++/*
++ * Reads an msr value (of 'msr_index') into 'pdata'.
++ * Returns 0 on success, non-0 otherwise.
++ * Assumes vcpu_load() was already called.
++ */
++static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct shared_msr_entry *msr;
++
++	switch (msr_info->index) {
++#ifdef CONFIG_X86_64
++	case MSR_FS_BASE:
++		msr_info->data = vmcs_readl(GUEST_FS_BASE);
++		break;
++	case MSR_GS_BASE:
++		msr_info->data = vmcs_readl(GUEST_GS_BASE);
++		break;
++	case MSR_KERNEL_GS_BASE:
++		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
++		break;
++#endif
++	case MSR_EFER:
++		return kvm_get_msr_common(vcpu, msr_info);
++	case MSR_IA32_SPEC_CTRL:
++		if (!msr_info->host_initiated &&
++		    !guest_has_spec_ctrl_msr(vcpu))
++			return 1;
++
++		msr_info->data = to_vmx(vcpu)->spec_ctrl;
++		break;
++	case MSR_IA32_SYSENTER_CS:
++		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
++		break;
++	case MSR_IA32_SYSENTER_EIP:
++		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
++		break;
++	case MSR_IA32_SYSENTER_ESP:
++		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
++		break;
++	case MSR_IA32_BNDCFGS:
++		if (!kvm_mpx_supported() ||
++		    (!msr_info->host_initiated &&
++		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
++			return 1;
++		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
++		break;
++	case MSR_IA32_MCG_EXT_CTL:
++		if (!msr_info->host_initiated &&
++		    !(vmx->msr_ia32_feature_control &
++		      FEATURE_CONTROL_LMCE))
++			return 1;
++		msr_info->data = vcpu->arch.mcg_ext_ctl;
++		break;
++	case MSR_IA32_FEATURE_CONTROL:
++		msr_info->data = vmx->msr_ia32_feature_control;
++		break;
++	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++		if (!nested_vmx_allowed(vcpu))
++			return 1;
++		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
++				       &msr_info->data);
++	case MSR_IA32_XSS:
++		if (!vmx_xsaves_supported() ||
++		    (!msr_info->host_initiated &&
++		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
++		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
++			return 1;
++		msr_info->data = vcpu->arch.ia32_xss;
++		break;
++	case MSR_TSC_AUX:
++		if (!msr_info->host_initiated &&
++		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
++			return 1;
++		/* Otherwise falls through */
++	default:
++		msr = find_msr_entry(vmx, msr_info->index);
++		if (msr) {
++			msr_info->data = msr->data;
++			break;
++		}
++		return kvm_get_msr_common(vcpu, msr_info);
++	}
++
++	return 0;
++}
++
++static void vmx_leave_nested(struct kvm_vcpu *vcpu);
++
++/*
++ * Writes msr value into into the appropriate "register".
++ * Returns 0 on success, non-0 otherwise.
++ * Assumes vcpu_load() was already called.
++ */
++static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct shared_msr_entry *msr;
++	int ret = 0;
++	u32 msr_index = msr_info->index;
++	u64 data = msr_info->data;
++
++	switch (msr_index) {
++	case MSR_EFER:
++		ret = kvm_set_msr_common(vcpu, msr_info);
++		break;
++#ifdef CONFIG_X86_64
++	case MSR_FS_BASE:
++		vmx_segment_cache_clear(vmx);
++		vmcs_writel(GUEST_FS_BASE, data);
++		break;
++	case MSR_GS_BASE:
++		vmx_segment_cache_clear(vmx);
++		vmcs_writel(GUEST_GS_BASE, data);
++		break;
++	case MSR_KERNEL_GS_BASE:
++		vmx_write_guest_kernel_gs_base(vmx, data);
++		break;
++#endif
++	case MSR_IA32_SYSENTER_CS:
++		vmcs_write32(GUEST_SYSENTER_CS, data);
++		break;
++	case MSR_IA32_SYSENTER_EIP:
++		vmcs_writel(GUEST_SYSENTER_EIP, data);
++		break;
++	case MSR_IA32_SYSENTER_ESP:
++		vmcs_writel(GUEST_SYSENTER_ESP, data);
++		break;
++	case MSR_IA32_BNDCFGS:
++		if (!kvm_mpx_supported() ||
++		    (!msr_info->host_initiated &&
++		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
++			return 1;
++		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
++		    (data & MSR_IA32_BNDCFGS_RSVD))
++			return 1;
++		vmcs_write64(GUEST_BNDCFGS, data);
++		break;
++	case MSR_IA32_SPEC_CTRL:
++		if (!msr_info->host_initiated &&
++		    !guest_has_spec_ctrl_msr(vcpu))
++			return 1;
++
++		/* The STIBP bit doesn't fault even if it's not advertised */
++		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
++			return 1;
++
++		vmx->spec_ctrl = data;
++
++		if (!data)
++			break;
++
++		/*
++		 * For non-nested:
++		 * When it's written (to non-zero) for the first time, pass
++		 * it through.
++		 *
++		 * For nested:
++		 * The handling of the MSR bitmap for L2 guests is done in
++		 * nested_vmx_merge_msr_bitmap. We should not touch the
++		 * vmcs02.msr_bitmap here since it gets completely overwritten
++		 * in the merging. We update the vmcs01 here for L1 as well
++		 * since it will end up touching the MSR anyway now.
++		 */
++		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
++					      MSR_IA32_SPEC_CTRL,
++					      MSR_TYPE_RW);
++		break;
++	case MSR_IA32_PRED_CMD:
++		if (!msr_info->host_initiated &&
++		    !guest_has_pred_cmd_msr(vcpu))
++			return 1;
++
++		if (data & ~PRED_CMD_IBPB)
++			return 1;
++
++		if (!data)
++			break;
++
++		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
++
++		/*
++		 * For non-nested:
++		 * When it's written (to non-zero) for the first time, pass
++		 * it through.
++		 *
++		 * For nested:
++		 * The handling of the MSR bitmap for L2 guests is done in
++		 * nested_vmx_merge_msr_bitmap. We should not touch the
++		 * vmcs02.msr_bitmap here since it gets completely overwritten
++		 * in the merging.
++		 */
++		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
++					      MSR_TYPE_W);
++		break;
++	case MSR_IA32_CR_PAT:
++		if (!kvm_pat_valid(data))
++			return 1;
++
++		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
++			vmcs_write64(GUEST_IA32_PAT, data);
++			vcpu->arch.pat = data;
++			break;
++		}
++		ret = kvm_set_msr_common(vcpu, msr_info);
++		break;
++	case MSR_IA32_TSC_ADJUST:
++		ret = kvm_set_msr_common(vcpu, msr_info);
++		break;
++	case MSR_IA32_MCG_EXT_CTL:
++		if ((!msr_info->host_initiated &&
++		     !(to_vmx(vcpu)->msr_ia32_feature_control &
++		       FEATURE_CONTROL_LMCE)) ||
++		    (data & ~MCG_EXT_CTL_LMCE_EN))
++			return 1;
++		vcpu->arch.mcg_ext_ctl = data;
++		break;
++	case MSR_IA32_FEATURE_CONTROL:
++		if (!vmx_feature_control_msr_valid(vcpu, data) ||
++		    (to_vmx(vcpu)->msr_ia32_feature_control &
++		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
++			return 1;
++		vmx->msr_ia32_feature_control = data;
++		if (msr_info->host_initiated && data == 0)
++			vmx_leave_nested(vcpu);
++		break;
++	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++		if (!msr_info->host_initiated)
++			return 1; /* they are read-only */
++		if (!nested_vmx_allowed(vcpu))
++			return 1;
++		return vmx_set_vmx_msr(vcpu, msr_index, data);
++	case MSR_IA32_XSS:
++		if (!vmx_xsaves_supported() ||
++		    (!msr_info->host_initiated &&
++		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
++		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
++			return 1;
++		/*
++		 * The only supported bit as of Skylake is bit 8, but
++		 * it is not supported on KVM.
++		 */
++		if (data != 0)
++			return 1;
++		vcpu->arch.ia32_xss = data;
++		if (vcpu->arch.ia32_xss != host_xss)
++			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
++				vcpu->arch.ia32_xss, host_xss, false);
++		else
++			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
++		break;
++	case MSR_TSC_AUX:
++		if (!msr_info->host_initiated &&
++		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
++			return 1;
++		/* Check reserved bit, higher 32 bits should be zero */
++		if ((data >> 32) != 0)
++			return 1;
++		/* Otherwise falls through */
++	default:
++		msr = find_msr_entry(vmx, msr_index);
++		if (msr) {
++			u64 old_msr_data = msr->data;
++			msr->data = data;
++			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
++				preempt_disable();
++				ret = kvm_set_shared_msr(msr->index, msr->data,
++							 msr->mask);
++				preempt_enable();
++				if (ret)
++					msr->data = old_msr_data;
++			}
++			break;
++		}
++			ret = kvm_set_msr_common(vcpu, msr_info);
++	}
++
++	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
++	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
++		vmx_update_fb_clear_dis(vcpu, vmx);
++
++	return ret;
++}
++
++static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
++{
++	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
++	switch (reg) {
++	case VCPU_REGS_RSP:
++		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
++		break;
++	case VCPU_REGS_RIP:
++		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
++		break;
++	case VCPU_EXREG_PDPTR:
++		if (enable_ept)
++			ept_save_pdptrs(vcpu);
++		break;
++	default:
++		break;
++	}
++}
++
++static __init int cpu_has_kvm_support(void)
++{
++	return cpu_has_vmx();
++}
++
++static __init int vmx_disabled_by_bios(void)
++{
++	u64 msr;
++
++	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
++	if (msr & FEATURE_CONTROL_LOCKED) {
++		/* launched w/ TXT and VMX disabled */
++		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
++			&& tboot_enabled())
++			return 1;
++		/* launched w/o TXT and VMX only enabled w/ TXT */
++		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
++			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
++			&& !tboot_enabled()) {
++			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
++				"activate TXT before enabling KVM\n");
++			return 1;
++		}
++		/* launched w/o TXT and VMX disabled */
++		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
++			&& !tboot_enabled())
++			return 1;
++	}
++
++	return 0;
++}
++
++static void kvm_cpu_vmxon(u64 addr)
++{
++	cr4_set_bits(X86_CR4_VMXE);
++	intel_pt_handle_vmx(1);
++
++	asm volatile (ASM_VMX_VMXON_RAX
++			: : "a"(&addr), "m"(addr)
++			: "memory", "cc");
++}
++
++static int hardware_enable(void)
++{
++	int cpu = raw_smp_processor_id();
++	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
++	u64 old, test_bits;
++
++	if (cr4_read_shadow() & X86_CR4_VMXE)
++		return -EBUSY;
++
++	/*
++	 * This can happen if we hot-added a CPU but failed to allocate
++	 * VP assist page for it.
++	 */
++	if (static_branch_unlikely(&enable_evmcs) &&
++	    !hv_get_vp_assist_page(cpu))
++		return -EFAULT;
++
++	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
++
++	test_bits = FEATURE_CONTROL_LOCKED;
++	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
++	if (tboot_enabled())
++		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
++
++	if ((old & test_bits) != test_bits) {
++		/* enable and lock */
++		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
++	}
++	kvm_cpu_vmxon(phys_addr);
++	if (enable_ept)
++		ept_sync_global();
++
++	return 0;
++}
++
++static void vmclear_local_loaded_vmcss(void)
++{
++	int cpu = raw_smp_processor_id();
++	struct loaded_vmcs *v, *n;
++
++	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
++				 loaded_vmcss_on_cpu_link)
++		__loaded_vmcs_clear(v);
++}
++
++
++/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
++ * tricks.
++ */
++static void kvm_cpu_vmxoff(void)
++{
++	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
++
++	intel_pt_handle_vmx(0);
++	cr4_clear_bits(X86_CR4_VMXE);
++}
++
++static void hardware_disable(void)
++{
++	vmclear_local_loaded_vmcss();
++	kvm_cpu_vmxoff();
++}
++
++static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
++				      u32 msr, u32 *result)
++{
++	u32 vmx_msr_low, vmx_msr_high;
++	u32 ctl = ctl_min | ctl_opt;
++
++	rdmsr(msr, vmx_msr_low, vmx_msr_high);
++
++	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
++	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
++
++	/* Ensure minimum (required) set of control bits are supported. */
++	if (ctl_min & ~ctl)
++		return -EIO;
++
++	*result = ctl;
++	return 0;
++}
++
++static __init bool allow_1_setting(u32 msr, u32 ctl)
++{
++	u32 vmx_msr_low, vmx_msr_high;
++
++	rdmsr(msr, vmx_msr_low, vmx_msr_high);
++	return vmx_msr_high & ctl;
++}
++
++static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
++{
++	u32 vmx_msr_low, vmx_msr_high;
++	u32 min, opt, min2, opt2;
++	u32 _pin_based_exec_control = 0;
++	u32 _cpu_based_exec_control = 0;
++	u32 _cpu_based_2nd_exec_control = 0;
++	u32 _vmexit_control = 0;
++	u32 _vmentry_control = 0;
++
++	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
++	min = CPU_BASED_HLT_EXITING |
++#ifdef CONFIG_X86_64
++	      CPU_BASED_CR8_LOAD_EXITING |
++	      CPU_BASED_CR8_STORE_EXITING |
++#endif
++	      CPU_BASED_CR3_LOAD_EXITING |
++	      CPU_BASED_CR3_STORE_EXITING |
++	      CPU_BASED_UNCOND_IO_EXITING |
++	      CPU_BASED_MOV_DR_EXITING |
++	      CPU_BASED_USE_TSC_OFFSETING |
++	      CPU_BASED_MWAIT_EXITING |
++	      CPU_BASED_MONITOR_EXITING |
++	      CPU_BASED_INVLPG_EXITING |
++	      CPU_BASED_RDPMC_EXITING;
++
++	opt = CPU_BASED_TPR_SHADOW |
++	      CPU_BASED_USE_MSR_BITMAPS |
++	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
++	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
++				&_cpu_based_exec_control) < 0)
++		return -EIO;
++#ifdef CONFIG_X86_64
++	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
++		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
++					   ~CPU_BASED_CR8_STORE_EXITING;
++#endif
++	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
++		min2 = 0;
++		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++			SECONDARY_EXEC_WBINVD_EXITING |
++			SECONDARY_EXEC_ENABLE_VPID |
++			SECONDARY_EXEC_ENABLE_EPT |
++			SECONDARY_EXEC_UNRESTRICTED_GUEST |
++			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
++			SECONDARY_EXEC_DESC |
++			SECONDARY_EXEC_RDTSCP |
++			SECONDARY_EXEC_ENABLE_INVPCID |
++			SECONDARY_EXEC_APIC_REGISTER_VIRT |
++			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
++			SECONDARY_EXEC_SHADOW_VMCS |
++			SECONDARY_EXEC_XSAVES |
++			SECONDARY_EXEC_RDSEED_EXITING |
++			SECONDARY_EXEC_RDRAND_EXITING |
++			SECONDARY_EXEC_ENABLE_PML |
++			SECONDARY_EXEC_TSC_SCALING |
++			SECONDARY_EXEC_ENABLE_VMFUNC |
++			SECONDARY_EXEC_ENCLS_EXITING;
++		if (adjust_vmx_controls(min2, opt2,
++					MSR_IA32_VMX_PROCBASED_CTLS2,
++					&_cpu_based_2nd_exec_control) < 0)
++			return -EIO;
++	}
++#ifndef CONFIG_X86_64
++	if (!(_cpu_based_2nd_exec_control &
++				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
++		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
++#endif
++
++	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
++		_cpu_based_2nd_exec_control &= ~(
++				SECONDARY_EXEC_APIC_REGISTER_VIRT |
++				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++
++	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
++		&vmx_capability.ept, &vmx_capability.vpid);
++
++	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
++		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
++		   enabled */
++		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
++					     CPU_BASED_CR3_STORE_EXITING |
++					     CPU_BASED_INVLPG_EXITING);
++	} else if (vmx_capability.ept) {
++		vmx_capability.ept = 0;
++		pr_warn_once("EPT CAP should not exist if not support "
++				"1-setting enable EPT VM-execution control\n");
++	}
++	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
++		vmx_capability.vpid) {
++		vmx_capability.vpid = 0;
++		pr_warn_once("VPID CAP should not exist if not support "
++				"1-setting enable VPID VM-execution control\n");
++	}
++
++	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
++#ifdef CONFIG_X86_64
++	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
++#endif
++	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
++		VM_EXIT_CLEAR_BNDCFGS;
++	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
++				&_vmexit_control) < 0)
++		return -EIO;
++
++	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
++	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
++		 PIN_BASED_VMX_PREEMPTION_TIMER;
++	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
++				&_pin_based_exec_control) < 0)
++		return -EIO;
++
++	if (cpu_has_broken_vmx_preemption_timer())
++		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
++	if (!(_cpu_based_2nd_exec_control &
++		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
++		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
++
++	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
++	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
++	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
++				&_vmentry_control) < 0)
++		return -EIO;
++
++	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
++
++	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
++	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
++		return -EIO;
++
++#ifdef CONFIG_X86_64
++	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
++	if (vmx_msr_high & (1u<<16))
++		return -EIO;
++#endif
++
++	/* Require Write-Back (WB) memory type for VMCS accesses. */
++	if (((vmx_msr_high >> 18) & 15) != 6)
++		return -EIO;
++
++	vmcs_conf->size = vmx_msr_high & 0x1fff;
++	vmcs_conf->order = get_order(vmcs_conf->size);
++	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
++
++	vmcs_conf->revision_id = vmx_msr_low;
++
++	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
++	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
++	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
++	vmcs_conf->vmexit_ctrl         = _vmexit_control;
++	vmcs_conf->vmentry_ctrl        = _vmentry_control;
++
++	if (static_branch_unlikely(&enable_evmcs))
++		evmcs_sanitize_exec_ctrls(vmcs_conf);
++
++	cpu_has_load_ia32_efer =
++		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
++				VM_ENTRY_LOAD_IA32_EFER)
++		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
++				   VM_EXIT_LOAD_IA32_EFER);
++
++	cpu_has_load_perf_global_ctrl =
++		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
++				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
++		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
++				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
++
++	/*
++	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
++	 * but due to errata below it can't be used. Workaround is to use
++	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
++	 *
++	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
++	 *
++	 * AAK155             (model 26)
++	 * AAP115             (model 30)
++	 * AAT100             (model 37)
++	 * BC86,AAY89,BD102   (model 44)
++	 * BA97               (model 46)
++	 *
++	 */
++	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
++		switch (boot_cpu_data.x86_model) {
++		case 26:
++		case 30:
++		case 37:
++		case 44:
++		case 46:
++			cpu_has_load_perf_global_ctrl = false;
++			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
++					"does not work properly. Using workaround\n");
++			break;
++		default:
++			break;
++		}
++	}
++
++	return 0;
++}
++
++static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
++{
++	int node = cpu_to_node(cpu);
++	struct page *pages;
++	struct vmcs *vmcs;
++
++	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
++	if (!pages)
++		return NULL;
++	vmcs = page_address(pages);
++	memset(vmcs, 0, vmcs_config.size);
++
++	/* KVM supports Enlightened VMCS v1 only */
++	if (static_branch_unlikely(&enable_evmcs))
++		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
++	else
++		vmcs->hdr.revision_id = vmcs_config.revision_id;
++
++	if (shadow)
++		vmcs->hdr.shadow_vmcs = 1;
++	return vmcs;
++}
++
++static void free_vmcs(struct vmcs *vmcs)
++{
++	free_pages((unsigned long)vmcs, vmcs_config.order);
++}
++
++/*
++ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
++ */
++static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
++{
++	if (!loaded_vmcs->vmcs)
++		return;
++	loaded_vmcs_clear(loaded_vmcs);
++	free_vmcs(loaded_vmcs->vmcs);
++	loaded_vmcs->vmcs = NULL;
++	if (loaded_vmcs->msr_bitmap)
++		free_page((unsigned long)loaded_vmcs->msr_bitmap);
++	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
++}
++
++static struct vmcs *alloc_vmcs(bool shadow)
++{
++	return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
++}
++
++static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
++{
++	loaded_vmcs->vmcs = alloc_vmcs(false);
++	if (!loaded_vmcs->vmcs)
++		return -ENOMEM;
++
++	loaded_vmcs->shadow_vmcs = NULL;
++	loaded_vmcs_init(loaded_vmcs);
++
++	if (cpu_has_vmx_msr_bitmap()) {
++		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
++		if (!loaded_vmcs->msr_bitmap)
++			goto out_vmcs;
++		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
++
++		if (IS_ENABLED(CONFIG_HYPERV) &&
++		    static_branch_unlikely(&enable_evmcs) &&
++		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
++			struct hv_enlightened_vmcs *evmcs =
++				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
++
++			evmcs->hv_enlightenments_control.msr_bitmap = 1;
++		}
++	}
++
++	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
++
++	return 0;
++
++out_vmcs:
++	free_loaded_vmcs(loaded_vmcs);
++	return -ENOMEM;
++}
++
++static void free_kvm_area(void)
++{
++	int cpu;
++
++	for_each_possible_cpu(cpu) {
++		free_vmcs(per_cpu(vmxarea, cpu));
++		per_cpu(vmxarea, cpu) = NULL;
++	}
++}
++
++enum vmcs_field_width {
++	VMCS_FIELD_WIDTH_U16 = 0,
++	VMCS_FIELD_WIDTH_U64 = 1,
++	VMCS_FIELD_WIDTH_U32 = 2,
++	VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
++};
++
++static inline int vmcs_field_width(unsigned long field)
++{
++	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
++		return VMCS_FIELD_WIDTH_U32;
++	return (field >> 13) & 0x3 ;
++}
++
++static inline int vmcs_field_readonly(unsigned long field)
++{
++	return (((field >> 10) & 0x3) == 1);
++}
++
++static void init_vmcs_shadow_fields(void)
++{
++	int i, j;
++
++	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
++		u16 field = shadow_read_only_fields[i];
++		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
++		    (i + 1 == max_shadow_read_only_fields ||
++		     shadow_read_only_fields[i + 1] != field + 1))
++			pr_err("Missing field from shadow_read_only_field %x\n",
++			       field + 1);
++
++		clear_bit(field, vmx_vmread_bitmap);
++#ifdef CONFIG_X86_64
++		if (field & 1)
++			continue;
++#endif
++		if (j < i)
++			shadow_read_only_fields[j] = field;
++		j++;
++	}
++	max_shadow_read_only_fields = j;
++
++	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
++		u16 field = shadow_read_write_fields[i];
++		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
++		    (i + 1 == max_shadow_read_write_fields ||
++		     shadow_read_write_fields[i + 1] != field + 1))
++			pr_err("Missing field from shadow_read_write_field %x\n",
++			       field + 1);
++
++		/*
++		 * PML and the preemption timer can be emulated, but the
++		 * processor cannot vmwrite to fields that don't exist
++		 * on bare metal.
++		 */
++		switch (field) {
++		case GUEST_PML_INDEX:
++			if (!cpu_has_vmx_pml())
++				continue;
++			break;
++		case VMX_PREEMPTION_TIMER_VALUE:
++			if (!cpu_has_vmx_preemption_timer())
++				continue;
++			break;
++		case GUEST_INTR_STATUS:
++			if (!cpu_has_vmx_apicv())
++				continue;
++			break;
++		default:
++			break;
++		}
++
++		clear_bit(field, vmx_vmwrite_bitmap);
++		clear_bit(field, vmx_vmread_bitmap);
++#ifdef CONFIG_X86_64
++		if (field & 1)
++			continue;
++#endif
++		if (j < i)
++			shadow_read_write_fields[j] = field;
++		j++;
++	}
++	max_shadow_read_write_fields = j;
++}
++
++static __init int alloc_kvm_area(void)
++{
++	int cpu;
++
++	for_each_possible_cpu(cpu) {
++		struct vmcs *vmcs;
++
++		vmcs = alloc_vmcs_cpu(false, cpu);
++		if (!vmcs) {
++			free_kvm_area();
++			return -ENOMEM;
++		}
++
++		/*
++		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
++		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
++		 * revision_id reported by MSR_IA32_VMX_BASIC.
++		 *
++		 * However, even though not explictly documented by
++		 * TLFS, VMXArea passed as VMXON argument should
++		 * still be marked with revision_id reported by
++		 * physical CPU.
++		 */
++		if (static_branch_unlikely(&enable_evmcs))
++			vmcs->hdr.revision_id = vmcs_config.revision_id;
++
++		per_cpu(vmxarea, cpu) = vmcs;
++	}
++	return 0;
++}
++
++static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
++		struct kvm_segment *save)
++{
++	if (!emulate_invalid_guest_state) {
++		/*
++		 * CS and SS RPL should be equal during guest entry according
++		 * to VMX spec, but in reality it is not always so. Since vcpu
++		 * is in the middle of the transition from real mode to
++		 * protected mode it is safe to assume that RPL 0 is a good
++		 * default value.
++		 */
++		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
++			save->selector &= ~SEGMENT_RPL_MASK;
++		save->dpl = save->selector & SEGMENT_RPL_MASK;
++		save->s = 1;
++	}
++	vmx_set_segment(vcpu, save, seg);
++}
++
++static void enter_pmode(struct kvm_vcpu *vcpu)
++{
++	unsigned long flags;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	/*
++	 * Update real mode segment cache. It may be not up-to-date if sement
++	 * register was written while vcpu was in a guest mode.
++	 */
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
++
++	vmx->rmode.vm86_active = 0;
++
++	vmx_segment_cache_clear(vmx);
++
++	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
++
++	flags = vmcs_readl(GUEST_RFLAGS);
++	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
++	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
++	vmcs_writel(GUEST_RFLAGS, flags);
++
++	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
++			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
++
++	update_exception_bitmap(vcpu);
++
++	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
++	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
++	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
++	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
++	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
++	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
++}
++
++static void fix_rmode_seg(int seg, struct kvm_segment *save)
++{
++	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
++	struct kvm_segment var = *save;
++
++	var.dpl = 0x3;
++	if (seg == VCPU_SREG_CS)
++		var.type = 0x3;
++
++	if (!emulate_invalid_guest_state) {
++		var.selector = var.base >> 4;
++		var.base = var.base & 0xffff0;
++		var.limit = 0xffff;
++		var.g = 0;
++		var.db = 0;
++		var.present = 1;
++		var.s = 1;
++		var.l = 0;
++		var.unusable = 0;
++		var.type = 0x3;
++		var.avl = 0;
++		if (save->base & 0xf)
++			printk_once(KERN_WARNING "kvm: segment base is not "
++					"paragraph aligned when entering "
++					"protected mode (seg=%d)", seg);
++	}
++
++	vmcs_write16(sf->selector, var.selector);
++	vmcs_writel(sf->base, var.base);
++	vmcs_write32(sf->limit, var.limit);
++	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
++}
++
++static void enter_rmode(struct kvm_vcpu *vcpu)
++{
++	unsigned long flags;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
++
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
++	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
++
++	vmx->rmode.vm86_active = 1;
++
++	/*
++	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
++	 * vcpu. Warn the user that an update is overdue.
++	 */
++	if (!kvm_vmx->tss_addr)
++		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
++			     "called before entering vcpu\n");
++
++	vmx_segment_cache_clear(vmx);
++
++	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
++	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
++	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
++
++	flags = vmcs_readl(GUEST_RFLAGS);
++	vmx->rmode.save_rflags = flags;
++
++	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
++
++	vmcs_writel(GUEST_RFLAGS, flags);
++	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
++	update_exception_bitmap(vcpu);
++
++	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
++	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
++	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
++	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
++	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
++	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
++
++	kvm_mmu_reset_context(vcpu);
++}
++
++static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
++
++	if (!msr)
++		return;
++
++	vcpu->arch.efer = efer;
++	if (efer & EFER_LMA) {
++		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
++		msr->data = efer;
++	} else {
++		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
++
++		msr->data = efer & ~EFER_LME;
++	}
++	setup_msrs(vmx);
++}
++
++#ifdef CONFIG_X86_64
++
++static void enter_lmode(struct kvm_vcpu *vcpu)
++{
++	u32 guest_tr_ar;
++
++	vmx_segment_cache_clear(to_vmx(vcpu));
++
++	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
++	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
++		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
++				     __func__);
++		vmcs_write32(GUEST_TR_AR_BYTES,
++			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
++			     | VMX_AR_TYPE_BUSY_64_TSS);
++	}
++	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
++}
++
++static void exit_lmode(struct kvm_vcpu *vcpu)
++{
++	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
++	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
++}
++
++#endif
++
++static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
++				bool invalidate_gpa)
++{
++	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
++		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
++			return;
++		ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
++	} else {
++		vpid_sync_context(vpid);
++	}
++}
++
++static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
++{
++	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
++}
++
++static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
++{
++	int vpid = to_vmx(vcpu)->vpid;
++
++	if (!vpid_sync_vcpu_addr(vpid, addr))
++		vpid_sync_context(vpid);
++
++	/*
++	 * If VPIDs are not supported or enabled, then the above is a no-op.
++	 * But we don't really need a TLB flush in that case anyway, because
++	 * each VM entry/exit includes an implicit flush when VPID is 0.
++	 */
++}
++
++static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
++{
++	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
++
++	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
++	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
++}
++
++static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
++{
++	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
++		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
++	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
++}
++
++static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
++{
++	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
++
++	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
++	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
++}
++
++static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
++{
++	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
++
++	if (!test_bit(VCPU_EXREG_PDPTR,
++		      (unsigned long *)&vcpu->arch.regs_dirty))
++		return;
++
++	if (is_pae_paging(vcpu)) {
++		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
++		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
++		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
++		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
++	}
++}
++
++static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
++{
++	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
++
++	if (is_pae_paging(vcpu)) {
++		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
++		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
++		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
++		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
++	}
++
++	__set_bit(VCPU_EXREG_PDPTR,
++		  (unsigned long *)&vcpu->arch.regs_avail);
++	__set_bit(VCPU_EXREG_PDPTR,
++		  (unsigned long *)&vcpu->arch.regs_dirty);
++}
++
++static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
++	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++	if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
++		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
++	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
++		fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
++
++	return fixed_bits_valid(val, fixed0, fixed1);
++}
++
++static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
++	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
++
++	return fixed_bits_valid(val, fixed0, fixed1);
++}
++
++static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
++	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
++
++	return fixed_bits_valid(val, fixed0, fixed1);
++}
++
++/* No difference in the restrictions on guest and host CR4 in VMX operation. */
++#define nested_guest_cr4_valid	nested_cr4_valid
++#define nested_host_cr4_valid	nested_cr4_valid
++
++static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
++
++static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
++					unsigned long cr0,
++					struct kvm_vcpu *vcpu)
++{
++	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
++		vmx_decache_cr3(vcpu);
++	if (!(cr0 & X86_CR0_PG)) {
++		/* From paging/starting to nonpaging */
++		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
++			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
++			     (CPU_BASED_CR3_LOAD_EXITING |
++			      CPU_BASED_CR3_STORE_EXITING));
++		vcpu->arch.cr0 = cr0;
++		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
++	} else if (!is_paging(vcpu)) {
++		/* From nonpaging to paging */
++		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
++			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
++			     ~(CPU_BASED_CR3_LOAD_EXITING |
++			       CPU_BASED_CR3_STORE_EXITING));
++		vcpu->arch.cr0 = cr0;
++		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
++	}
++
++	if (!(cr0 & X86_CR0_WP))
++		*hw_cr0 &= ~X86_CR0_WP;
++}
++
++static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned long hw_cr0;
++
++	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
++	if (enable_unrestricted_guest)
++		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
++	else {
++		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
++
++		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
++			enter_pmode(vcpu);
++
++		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
++			enter_rmode(vcpu);
++	}
++
++#ifdef CONFIG_X86_64
++	if (vcpu->arch.efer & EFER_LME) {
++		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
++			enter_lmode(vcpu);
++		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
++			exit_lmode(vcpu);
++	}
++#endif
++
++	if (enable_ept && !enable_unrestricted_guest)
++		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
++
++	vmcs_writel(CR0_READ_SHADOW, cr0);
++	vmcs_writel(GUEST_CR0, hw_cr0);
++	vcpu->arch.cr0 = cr0;
++
++	/* depends on vcpu->arch.cr0 to be set to a new value */
++	vmx->emulation_required = emulation_required(vcpu);
++}
++
++static int get_ept_level(struct kvm_vcpu *vcpu)
++{
++	/* Nested EPT currently only supports 4-level walks. */
++	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
++		return 4;
++	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
++		return 5;
++	return 4;
++}
++
++static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
++{
++	u64 eptp = VMX_EPTP_MT_WB;
++
++	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
++
++	if (enable_ept_ad_bits &&
++	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
++		eptp |= VMX_EPTP_AD_ENABLE_BIT;
++	eptp |= (root_hpa & PAGE_MASK);
++
++	return eptp;
++}
++
++static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
++{
++	struct kvm *kvm = vcpu->kvm;
++	unsigned long guest_cr3;
++	u64 eptp;
++
++	guest_cr3 = cr3;
++	if (enable_ept) {
++		eptp = construct_eptp(vcpu, cr3);
++		vmcs_write64(EPT_POINTER, eptp);
++
++		if (kvm_x86_ops->tlb_remote_flush) {
++			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++			to_vmx(vcpu)->ept_pointer = eptp;
++			to_kvm_vmx(kvm)->ept_pointers_match
++				= EPT_POINTERS_CHECK;
++			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++		}
++
++		if (enable_unrestricted_guest || is_paging(vcpu) ||
++		    is_guest_mode(vcpu))
++			guest_cr3 = kvm_read_cr3(vcpu);
++		else
++			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
++		ept_load_pdptrs(vcpu);
++	}
++
++	vmcs_writel(GUEST_CR3, guest_cr3);
++}
++
++static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
++{
++	/*
++	 * Pass through host's Machine Check Enable value to hw_cr4, which
++	 * is in force while we are in guest mode.  Do not let guests control
++	 * this bit, even if host CR4.MCE == 0.
++	 */
++	unsigned long hw_cr4;
++
++	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
++	if (enable_unrestricted_guest)
++		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
++	else if (to_vmx(vcpu)->rmode.vm86_active)
++		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
++	else
++		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
++
++	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
++		if (cr4 & X86_CR4_UMIP) {
++			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
++				SECONDARY_EXEC_DESC);
++			hw_cr4 &= ~X86_CR4_UMIP;
++		} else if (!is_guest_mode(vcpu) ||
++			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
++			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
++					SECONDARY_EXEC_DESC);
++	}
++
++	if (cr4 & X86_CR4_VMXE) {
++		/*
++		 * To use VMXON (and later other VMX instructions), a guest
++		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
++		 * So basically the check on whether to allow nested VMX
++		 * is here.  We operate under the default treatment of SMM,
++		 * so VMX cannot be enabled under SMM.
++		 */
++		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
++			return 1;
++	}
++
++	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
++		return 1;
++
++	vcpu->arch.cr4 = cr4;
++
++	if (!enable_unrestricted_guest) {
++		if (enable_ept) {
++			if (!is_paging(vcpu)) {
++				hw_cr4 &= ~X86_CR4_PAE;
++				hw_cr4 |= X86_CR4_PSE;
++			} else if (!(cr4 & X86_CR4_PAE)) {
++				hw_cr4 &= ~X86_CR4_PAE;
++			}
++		}
++
++		/*
++		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
++		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
++		 * to be manually disabled when guest switches to non-paging
++		 * mode.
++		 *
++		 * If !enable_unrestricted_guest, the CPU is always running
++		 * with CR0.PG=1 and CR4 needs to be modified.
++		 * If enable_unrestricted_guest, the CPU automatically
++		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
++		 */
++		if (!is_paging(vcpu))
++			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
++	}
++
++	vmcs_writel(CR4_READ_SHADOW, cr4);
++	vmcs_writel(GUEST_CR4, hw_cr4);
++	return 0;
++}
++
++static void vmx_get_segment(struct kvm_vcpu *vcpu,
++			    struct kvm_segment *var, int seg)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 ar;
++
++	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
++		*var = vmx->rmode.segs[seg];
++		if (seg == VCPU_SREG_TR
++		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
++			return;
++		var->base = vmx_read_guest_seg_base(vmx, seg);
++		var->selector = vmx_read_guest_seg_selector(vmx, seg);
++		return;
++	}
++	var->base = vmx_read_guest_seg_base(vmx, seg);
++	var->limit = vmx_read_guest_seg_limit(vmx, seg);
++	var->selector = vmx_read_guest_seg_selector(vmx, seg);
++	ar = vmx_read_guest_seg_ar(vmx, seg);
++	var->unusable = (ar >> 16) & 1;
++	var->type = ar & 15;
++	var->s = (ar >> 4) & 1;
++	var->dpl = (ar >> 5) & 3;
++	/*
++	 * Some userspaces do not preserve unusable property. Since usable
++	 * segment has to be present according to VMX spec we can use present
++	 * property to amend userspace bug by making unusable segment always
++	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
++	 * segment as unusable.
++	 */
++	var->present = !var->unusable;
++	var->avl = (ar >> 12) & 1;
++	var->l = (ar >> 13) & 1;
++	var->db = (ar >> 14) & 1;
++	var->g = (ar >> 15) & 1;
++}
++
++static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
++{
++	struct kvm_segment s;
++
++	if (to_vmx(vcpu)->rmode.vm86_active) {
++		vmx_get_segment(vcpu, &s, seg);
++		return s.base;
++	}
++	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
++}
++
++static int vmx_get_cpl(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (unlikely(vmx->rmode.vm86_active))
++		return 0;
++	else {
++		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
++		return VMX_AR_DPL(ar);
++	}
++}
++
++static u32 vmx_segment_access_rights(struct kvm_segment *var)
++{
++	u32 ar;
++
++	ar = var->type & 15;
++	ar |= (var->s & 1) << 4;
++	ar |= (var->dpl & 3) << 5;
++	ar |= (var->present & 1) << 7;
++	ar |= (var->avl & 1) << 12;
++	ar |= (var->l & 1) << 13;
++	ar |= (var->db & 1) << 14;
++	ar |= (var->g & 1) << 15;
++	ar |= (var->unusable || !var->present) << 16;
++
++	return ar;
++}
++
++static void vmx_set_segment(struct kvm_vcpu *vcpu,
++			    struct kvm_segment *var, int seg)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
++
++	vmx_segment_cache_clear(vmx);
++
++	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
++		vmx->rmode.segs[seg] = *var;
++		if (seg == VCPU_SREG_TR)
++			vmcs_write16(sf->selector, var->selector);
++		else if (var->s)
++			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
++		goto out;
++	}
++
++	vmcs_writel(sf->base, var->base);
++	vmcs_write32(sf->limit, var->limit);
++	vmcs_write16(sf->selector, var->selector);
++
++	/*
++	 *   Fix the "Accessed" bit in AR field of segment registers for older
++	 * qemu binaries.
++	 *   IA32 arch specifies that at the time of processor reset the
++	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
++	 * is setting it to 0 in the userland code. This causes invalid guest
++	 * state vmexit when "unrestricted guest" mode is turned on.
++	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
++	 * tree. Newer qemu binaries with that qemu fix would not need this
++	 * kvm hack.
++	 */
++	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
++		var->type |= 0x1; /* Accessed */
++
++	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
++
++out:
++	vmx->emulation_required = emulation_required(vcpu);
++}
++
++static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
++{
++	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
++
++	*db = (ar >> 14) & 1;
++	*l = (ar >> 13) & 1;
++}
++
++static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
++	dt->address = vmcs_readl(GUEST_IDTR_BASE);
++}
++
++static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
++	vmcs_writel(GUEST_IDTR_BASE, dt->address);
++}
++
++static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
++	dt->address = vmcs_readl(GUEST_GDTR_BASE);
++}
++
++static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
++	vmcs_writel(GUEST_GDTR_BASE, dt->address);
++}
++
++static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
++{
++	struct kvm_segment var;
++	u32 ar;
++
++	vmx_get_segment(vcpu, &var, seg);
++	var.dpl = 0x3;
++	if (seg == VCPU_SREG_CS)
++		var.type = 0x3;
++	ar = vmx_segment_access_rights(&var);
++
++	if (var.base != (var.selector << 4))
++		return false;
++	if (var.limit != 0xffff)
++		return false;
++	if (ar != 0xf3)
++		return false;
++
++	return true;
++}
++
++static bool code_segment_valid(struct kvm_vcpu *vcpu)
++{
++	struct kvm_segment cs;
++	unsigned int cs_rpl;
++
++	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
++	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
++
++	if (cs.unusable)
++		return false;
++	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
++		return false;
++	if (!cs.s)
++		return false;
++	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
++		if (cs.dpl > cs_rpl)
++			return false;
++	} else {
++		if (cs.dpl != cs_rpl)
++			return false;
++	}
++	if (!cs.present)
++		return false;
++
++	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
++	return true;
++}
++
++static bool stack_segment_valid(struct kvm_vcpu *vcpu)
++{
++	struct kvm_segment ss;
++	unsigned int ss_rpl;
++
++	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
++	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
++
++	if (ss.unusable)
++		return true;
++	if (ss.type != 3 && ss.type != 7)
++		return false;
++	if (!ss.s)
++		return false;
++	if (ss.dpl != ss_rpl) /* DPL != RPL */
++		return false;
++	if (!ss.present)
++		return false;
++
++	return true;
++}
++
++static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
++{
++	struct kvm_segment var;
++	unsigned int rpl;
++
++	vmx_get_segment(vcpu, &var, seg);
++	rpl = var.selector & SEGMENT_RPL_MASK;
++
++	if (var.unusable)
++		return true;
++	if (!var.s)
++		return false;
++	if (!var.present)
++		return false;
++	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
++		if (var.dpl < rpl) /* DPL < RPL */
++			return false;
++	}
++
++	/* TODO: Add other members to kvm_segment_field to allow checking for other access
++	 * rights flags
++	 */
++	return true;
++}
++
++static bool tr_valid(struct kvm_vcpu *vcpu)
++{
++	struct kvm_segment tr;
++
++	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
++
++	if (tr.unusable)
++		return false;
++	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
++		return false;
++	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
++		return false;
++	if (!tr.present)
++		return false;
++
++	return true;
++}
++
++static bool ldtr_valid(struct kvm_vcpu *vcpu)
++{
++	struct kvm_segment ldtr;
++
++	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
++
++	if (ldtr.unusable)
++		return true;
++	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
++		return false;
++	if (ldtr.type != 2)
++		return false;
++	if (!ldtr.present)
++		return false;
++
++	return true;
++}
++
++static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
++{
++	struct kvm_segment cs, ss;
++
++	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
++	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
++
++	return ((cs.selector & SEGMENT_RPL_MASK) ==
++		 (ss.selector & SEGMENT_RPL_MASK));
++}
++
++static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu,
++					unsigned int port, int size);
++static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
++				       struct vmcs12 *vmcs12)
++{
++	unsigned long exit_qualification;
++	unsigned short port;
++	int size;
++
++	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
++		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++	port = exit_qualification >> 16;
++	size = (exit_qualification & 7) + 1;
++
++	return nested_vmx_check_io_bitmaps(vcpu, port, size);
++}
++
++/*
++ * Check if guest state is valid. Returns true if valid, false if
++ * not.
++ * We assume that registers are always usable
++ */
++static bool guest_state_valid(struct kvm_vcpu *vcpu)
++{
++	if (enable_unrestricted_guest)
++		return true;
++
++	/* real mode guest state checks */
++	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
++		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
++			return false;
++		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
++			return false;
++		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
++			return false;
++		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
++			return false;
++		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
++			return false;
++		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
++			return false;
++	} else {
++	/* protected mode guest state checks */
++		if (!cs_ss_rpl_check(vcpu))
++			return false;
++		if (!code_segment_valid(vcpu))
++			return false;
++		if (!stack_segment_valid(vcpu))
++			return false;
++		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
++			return false;
++		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
++			return false;
++		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
++			return false;
++		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
++			return false;
++		if (!tr_valid(vcpu))
++			return false;
++		if (!ldtr_valid(vcpu))
++			return false;
++	}
++	/* TODO:
++	 * - Add checks on RIP
++	 * - Add checks on RFLAGS
++	 */
++
++	return true;
++}
++
++static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
++{
++	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
++}
++
++static int init_rmode_tss(struct kvm *kvm)
++{
++	gfn_t fn;
++	u16 data = 0;
++	int idx, r;
++
++	idx = srcu_read_lock(&kvm->srcu);
++	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
++	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
++	if (r < 0)
++		goto out;
++	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
++	r = kvm_write_guest_page(kvm, fn++, &data,
++			TSS_IOPB_BASE_OFFSET, sizeof(u16));
++	if (r < 0)
++		goto out;
++	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
++	if (r < 0)
++		goto out;
++	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
++	if (r < 0)
++		goto out;
++	data = ~0;
++	r = kvm_write_guest_page(kvm, fn, &data,
++				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
++				 sizeof(u8));
++out:
++	srcu_read_unlock(&kvm->srcu, idx);
++	return r;
++}
++
++static int init_rmode_identity_map(struct kvm *kvm)
++{
++	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
++	int i, idx, r = 0;
++	kvm_pfn_t identity_map_pfn;
++	u32 tmp;
++
++	/* Protect kvm_vmx->ept_identity_pagetable_done. */
++	mutex_lock(&kvm->slots_lock);
++
++	if (likely(kvm_vmx->ept_identity_pagetable_done))
++		goto out2;
++
++	if (!kvm_vmx->ept_identity_map_addr)
++		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
++	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
++
++	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
++				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
++	if (r < 0)
++		goto out2;
++
++	idx = srcu_read_lock(&kvm->srcu);
++	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
++	if (r < 0)
++		goto out;
++	/* Set up identity-mapping pagetable for EPT in real mode */
++	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
++		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
++			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
++		r = kvm_write_guest_page(kvm, identity_map_pfn,
++				&tmp, i * sizeof(tmp), sizeof(tmp));
++		if (r < 0)
++			goto out;
++	}
++	kvm_vmx->ept_identity_pagetable_done = true;
++
++out:
++	srcu_read_unlock(&kvm->srcu, idx);
++
++out2:
++	mutex_unlock(&kvm->slots_lock);
++	return r;
++}
++
++static void seg_setup(int seg)
++{
++	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
++	unsigned int ar;
++
++	vmcs_write16(sf->selector, 0);
++	vmcs_writel(sf->base, 0);
++	vmcs_write32(sf->limit, 0xffff);
++	ar = 0x93;
++	if (seg == VCPU_SREG_CS)
++		ar |= 0x08; /* code segment */
++
++	vmcs_write32(sf->ar_bytes, ar);
++}
++
++static int alloc_apic_access_page(struct kvm *kvm)
++{
++	struct page *page;
++	int r = 0;
++
++	mutex_lock(&kvm->slots_lock);
++	if (kvm->arch.apic_access_page_done)
++		goto out;
++	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
++				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
++	if (r)
++		goto out;
++
++	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
++	if (is_error_page(page)) {
++		r = -EFAULT;
++		goto out;
++	}
++
++	/*
++	 * Do not pin the page in memory, so that memory hot-unplug
++	 * is able to migrate it.
++	 */
++	put_page(page);
++	kvm->arch.apic_access_page_done = true;
++out:
++	mutex_unlock(&kvm->slots_lock);
++	return r;
++}
++
++static int allocate_vpid(void)
++{
++	int vpid;
++
++	if (!enable_vpid)
++		return 0;
++	spin_lock(&vmx_vpid_lock);
++	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
++	if (vpid < VMX_NR_VPIDS)
++		__set_bit(vpid, vmx_vpid_bitmap);
++	else
++		vpid = 0;
++	spin_unlock(&vmx_vpid_lock);
++	return vpid;
++}
++
++static void free_vpid(int vpid)
++{
++	if (!enable_vpid || vpid == 0)
++		return;
++	spin_lock(&vmx_vpid_lock);
++	__clear_bit(vpid, vmx_vpid_bitmap);
++	spin_unlock(&vmx_vpid_lock);
++}
++
++static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
++							  u32 msr, int type)
++{
++	int f = sizeof(unsigned long);
++
++	if (!cpu_has_vmx_msr_bitmap())
++		return;
++
++	if (static_branch_unlikely(&enable_evmcs))
++		evmcs_touch_msr_bitmap();
++
++	/*
++	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
++	 * have the write-low and read-high bitmap offsets the wrong way round.
++	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
++	 */
++	if (msr <= 0x1fff) {
++		if (type & MSR_TYPE_R)
++			/* read-low */
++			__clear_bit(msr, msr_bitmap + 0x000 / f);
++
++		if (type & MSR_TYPE_W)
++			/* write-low */
++			__clear_bit(msr, msr_bitmap + 0x800 / f);
++
++	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++		msr &= 0x1fff;
++		if (type & MSR_TYPE_R)
++			/* read-high */
++			__clear_bit(msr, msr_bitmap + 0x400 / f);
++
++		if (type & MSR_TYPE_W)
++			/* write-high */
++			__clear_bit(msr, msr_bitmap + 0xc00 / f);
++
++	}
++}
++
++static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
++							 u32 msr, int type)
++{
++	int f = sizeof(unsigned long);
++
++	if (!cpu_has_vmx_msr_bitmap())
++		return;
++
++	if (static_branch_unlikely(&enable_evmcs))
++		evmcs_touch_msr_bitmap();
++
++	/*
++	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
++	 * have the write-low and read-high bitmap offsets the wrong way round.
++	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
++	 */
++	if (msr <= 0x1fff) {
++		if (type & MSR_TYPE_R)
++			/* read-low */
++			__set_bit(msr, msr_bitmap + 0x000 / f);
++
++		if (type & MSR_TYPE_W)
++			/* write-low */
++			__set_bit(msr, msr_bitmap + 0x800 / f);
++
++	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++		msr &= 0x1fff;
++		if (type & MSR_TYPE_R)
++			/* read-high */
++			__set_bit(msr, msr_bitmap + 0x400 / f);
++
++		if (type & MSR_TYPE_W)
++			/* write-high */
++			__set_bit(msr, msr_bitmap + 0xc00 / f);
++
++	}
++}
++
++static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
++			     			      u32 msr, int type, bool value)
++{
++	if (value)
++		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
++	else
++		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
++}
++
++/*
++ * If a msr is allowed by L0, we should check whether it is allowed by L1.
++ * The corresponding bit will be cleared unless both of L0 and L1 allow it.
++ */
++static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
++					       unsigned long *msr_bitmap_nested,
++					       u32 msr, int type)
++{
++	int f = sizeof(unsigned long);
++
++	/*
++	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
++	 * have the write-low and read-high bitmap offsets the wrong way round.
++	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
++	 */
++	if (msr <= 0x1fff) {
++		if (type & MSR_TYPE_R &&
++		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
++			/* read-low */
++			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
++
++		if (type & MSR_TYPE_W &&
++		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
++			/* write-low */
++			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
++
++	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++		msr &= 0x1fff;
++		if (type & MSR_TYPE_R &&
++		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
++			/* read-high */
++			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
++
++		if (type & MSR_TYPE_W &&
++		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
++			/* write-high */
++			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
++
++	}
++}
++
++static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
++{
++	u8 mode = 0;
++
++	if (cpu_has_secondary_exec_ctrls() &&
++	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
++	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
++		mode |= MSR_BITMAP_MODE_X2APIC;
++		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
++			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
++	}
++
++	return mode;
++}
++
++#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
++
++static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
++					 u8 mode)
++{
++	int msr;
++
++	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
++		unsigned word = msr / BITS_PER_LONG;
++		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
++		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
++	}
++
++	if (mode & MSR_BITMAP_MODE_X2APIC) {
++		/*
++		 * TPR reads and writes can be virtualized even if virtual interrupt
++		 * delivery is not in use.
++		 */
++		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
++		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
++			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
++			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
++			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
++		}
++	}
++}
++
++static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
++	u8 mode = vmx_msr_bitmap_mode(vcpu);
++	u8 changed = mode ^ vmx->msr_bitmap_mode;
++
++	if (!changed)
++		return;
++
++	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
++		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
++
++	vmx->msr_bitmap_mode = mode;
++}
++
++static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
++{
++	return enable_apicv;
++}
++
++static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	gfn_t gfn;
++
++	/*
++	 * Don't need to mark the APIC access page dirty; it is never
++	 * written to by the CPU during APIC virtualization.
++	 */
++
++	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
++		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
++		kvm_vcpu_mark_page_dirty(vcpu, gfn);
++	}
++
++	if (nested_cpu_has_posted_intr(vmcs12)) {
++		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
++		kvm_vcpu_mark_page_dirty(vcpu, gfn);
++	}
++}
++
++
++static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int max_irr;
++	void *vapic_page;
++	u16 status;
++
++	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
++		return;
++
++	vmx->nested.pi_pending = false;
++	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
++		return;
++
++	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
++	if (max_irr != 256) {
++		vapic_page = kmap(vmx->nested.virtual_apic_page);
++		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
++			vapic_page, &max_irr);
++		kunmap(vmx->nested.virtual_apic_page);
++
++		status = vmcs_read16(GUEST_INTR_STATUS);
++		if ((u8)max_irr > ((u8)status & 0xff)) {
++			status &= ~0xff;
++			status |= (u8)max_irr;
++			vmcs_write16(GUEST_INTR_STATUS, status);
++		}
++	}
++
++	nested_mark_vmcs12_pages_dirty(vcpu);
++}
++
++static u8 vmx_get_rvi(void)
++{
++	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
++}
++
++static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	void *vapic_page;
++	u32 vppr;
++	int rvi;
++
++	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
++		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
++		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
++		return false;
++
++	rvi = vmx_get_rvi();
++
++	vapic_page = kmap(vmx->nested.virtual_apic_page);
++	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
++	kunmap(vmx->nested.virtual_apic_page);
++
++	return ((rvi & 0xf0) > (vppr & 0xf0));
++}
++
++static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
++						     bool nested)
++{
++#ifdef CONFIG_SMP
++	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
++
++	if (vcpu->mode == IN_GUEST_MODE) {
++		/*
++		 * The vector of interrupt to be delivered to vcpu had
++		 * been set in PIR before this function.
++		 *
++		 * Following cases will be reached in this block, and
++		 * we always send a notification event in all cases as
++		 * explained below.
++		 *
++		 * Case 1: vcpu keeps in non-root mode. Sending a
++		 * notification event posts the interrupt to vcpu.
++		 *
++		 * Case 2: vcpu exits to root mode and is still
++		 * runnable. PIR will be synced to vIRR before the
++		 * next vcpu entry. Sending a notification event in
++		 * this case has no effect, as vcpu is not in root
++		 * mode.
++		 *
++		 * Case 3: vcpu exits to root mode and is blocked.
++		 * vcpu_block() has already synced PIR to vIRR and
++		 * never blocks vcpu if vIRR is not cleared. Therefore,
++		 * a blocked vcpu here does not wait for any requested
++		 * interrupts in PIR, and sending a notification event
++		 * which has no effect is safe here.
++		 */
++
++		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
++		return true;
++	}
++#endif
++	return false;
++}
++
++static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
++						int vector)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (is_guest_mode(vcpu) &&
++	    vector == vmx->nested.posted_intr_nv) {
++		/*
++		 * If a posted intr is not recognized by hardware,
++		 * we will accomplish it in the next vmentry.
++		 */
++		vmx->nested.pi_pending = true;
++		kvm_make_request(KVM_REQ_EVENT, vcpu);
++		/* the PIR and ON have been set by L1. */
++		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
++			kvm_vcpu_kick(vcpu);
++		return 0;
++	}
++	return -1;
++}
++/*
++ * Send interrupt to vcpu via posted interrupt way.
++ * 1. If target vcpu is running(non-root mode), send posted interrupt
++ * notification to vcpu and hardware will sync PIR to vIRR atomically.
++ * 2. If target vcpu isn't running(root mode), kick it to pick up the
++ * interrupt from PIR in next vmentry.
++ */
++static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int r;
++
++	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
++	if (!r)
++		return 0;
++
++	if (!vcpu->arch.apicv_active)
++		return -1;
++
++	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
++		return 0;
++
++	/* If a previous notification has sent the IPI, nothing to do.  */
++	if (pi_test_and_set_on(&vmx->pi_desc))
++		return 0;
++
++	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
++		kvm_vcpu_kick(vcpu);
++
++	return 0;
++}
++
++/*
++ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
++ * will not change in the lifetime of the guest.
++ * Note that host-state that does change is set elsewhere. E.g., host-state
++ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
++ */
++static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
++{
++	u32 low32, high32;
++	unsigned long tmpl;
++	struct desc_ptr dt;
++	unsigned long cr0, cr3, cr4;
++
++	cr0 = read_cr0();
++	WARN_ON(cr0 & X86_CR0_TS);
++	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
++
++	/*
++	 * Save the most likely value for this task's CR3 in the VMCS.
++	 * We can't use __get_current_cr3_fast() because we're not atomic.
++	 */
++	cr3 = __read_cr3();
++	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
++	vmx->loaded_vmcs->host_state.cr3 = cr3;
++
++	/* Save the most likely value for this task's CR4 in the VMCS. */
++	cr4 = cr4_read_shadow();
++	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
++	vmx->loaded_vmcs->host_state.cr4 = cr4;
++
++	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
++#ifdef CONFIG_X86_64
++	/*
++	 * Load null selectors, so we can avoid reloading them in
++	 * vmx_prepare_switch_to_host(), in case userspace uses
++	 * the null selectors too (the expected case).
++	 */
++	vmcs_write16(HOST_DS_SELECTOR, 0);
++	vmcs_write16(HOST_ES_SELECTOR, 0);
++#else
++	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
++	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
++#endif
++	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
++	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
++
++	store_idt(&dt);
++	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
++	vmx->host_idt_base = dt.address;
++
++	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
++
++	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
++	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
++	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
++	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
++
++	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
++		rdmsr(MSR_IA32_CR_PAT, low32, high32);
++		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
++	}
++}
++
++static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
++{
++	BUILD_BUG_ON(KVM_CR4_GUEST_OWNED_BITS & ~KVM_POSSIBLE_CR4_GUEST_BITS);
++
++	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
++	if (enable_ept)
++		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
++	if (is_guest_mode(&vmx->vcpu))
++		vmx->vcpu.arch.cr4_guest_owned_bits &=
++			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
++	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
++}
++
++static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
++{
++	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
++
++	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
++		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
++
++	if (!enable_vnmi)
++		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
++
++	/* Enable the preemption timer dynamically */
++	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
++	return pin_based_exec_ctrl;
++}
++
++static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
++	if (cpu_has_secondary_exec_ctrls()) {
++		if (kvm_vcpu_apicv_active(vcpu))
++			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
++				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
++				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++		else
++			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
++					SECONDARY_EXEC_APIC_REGISTER_VIRT |
++					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++	}
++
++	if (cpu_has_vmx_msr_bitmap())
++		vmx_update_msr_bitmap(vcpu);
++}
++
++static u32 vmx_exec_control(struct vcpu_vmx *vmx)
++{
++	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
++
++	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
++		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
++
++	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
++		exec_control &= ~CPU_BASED_TPR_SHADOW;
++#ifdef CONFIG_X86_64
++		exec_control |= CPU_BASED_CR8_STORE_EXITING |
++				CPU_BASED_CR8_LOAD_EXITING;
++#endif
++	}
++	if (!enable_ept)
++		exec_control |= CPU_BASED_CR3_STORE_EXITING |
++				CPU_BASED_CR3_LOAD_EXITING  |
++				CPU_BASED_INVLPG_EXITING;
++	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
++		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
++				CPU_BASED_MONITOR_EXITING);
++	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
++		exec_control &= ~CPU_BASED_HLT_EXITING;
++	return exec_control;
++}
++
++static bool vmx_rdrand_supported(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_RDRAND_EXITING;
++}
++
++static bool vmx_rdseed_supported(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_RDSEED_EXITING;
++}
++
++static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
++{
++	struct kvm_vcpu *vcpu = &vmx->vcpu;
++
++	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
++
++	if (!cpu_need_virtualize_apic_accesses(vcpu))
++		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++	if (vmx->vpid == 0)
++		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
++	if (!enable_ept) {
++		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
++		enable_unrestricted_guest = 0;
++	}
++	if (!enable_unrestricted_guest)
++		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
++	if (kvm_pause_in_guest(vmx->vcpu.kvm))
++		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
++	if (!kvm_vcpu_apicv_active(vcpu))
++		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
++				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
++
++	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
++	 * in vmx_set_cr4.  */
++	exec_control &= ~SECONDARY_EXEC_DESC;
++
++	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
++	   (handle_vmptrld).
++	   We can NOT enable shadow_vmcs here because we don't have yet
++	   a current VMCS12
++	*/
++	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
++
++	if (!enable_pml)
++		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
++
++	if (vmx_xsaves_supported()) {
++		/* Exposing XSAVES only when XSAVE is exposed */
++		bool xsaves_enabled =
++			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
++			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
++
++		if (!xsaves_enabled)
++			exec_control &= ~SECONDARY_EXEC_XSAVES;
++
++		if (nested) {
++			if (xsaves_enabled)
++				vmx->nested.msrs.secondary_ctls_high |=
++					SECONDARY_EXEC_XSAVES;
++			else
++				vmx->nested.msrs.secondary_ctls_high &=
++					~SECONDARY_EXEC_XSAVES;
++		}
++	}
++
++	if (vmx_rdtscp_supported()) {
++		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
++		if (!rdtscp_enabled)
++			exec_control &= ~SECONDARY_EXEC_RDTSCP;
++
++		if (nested) {
++			if (rdtscp_enabled)
++				vmx->nested.msrs.secondary_ctls_high |=
++					SECONDARY_EXEC_RDTSCP;
++			else
++				vmx->nested.msrs.secondary_ctls_high &=
++					~SECONDARY_EXEC_RDTSCP;
++		}
++	}
++
++	if (vmx_invpcid_supported()) {
++		/* Exposing INVPCID only when PCID is exposed */
++		bool invpcid_enabled =
++			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
++			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
++
++		if (!invpcid_enabled) {
++			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
++			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
++		}
++
++		if (nested) {
++			if (invpcid_enabled)
++				vmx->nested.msrs.secondary_ctls_high |=
++					SECONDARY_EXEC_ENABLE_INVPCID;
++			else
++				vmx->nested.msrs.secondary_ctls_high &=
++					~SECONDARY_EXEC_ENABLE_INVPCID;
++		}
++	}
++
++	if (vmx_rdrand_supported()) {
++		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
++		if (rdrand_enabled)
++			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
++
++		if (nested) {
++			if (rdrand_enabled)
++				vmx->nested.msrs.secondary_ctls_high |=
++					SECONDARY_EXEC_RDRAND_EXITING;
++			else
++				vmx->nested.msrs.secondary_ctls_high &=
++					~SECONDARY_EXEC_RDRAND_EXITING;
++		}
++	}
++
++	if (vmx_rdseed_supported()) {
++		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
++		if (rdseed_enabled)
++			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
++
++		if (nested) {
++			if (rdseed_enabled)
++				vmx->nested.msrs.secondary_ctls_high |=
++					SECONDARY_EXEC_RDSEED_EXITING;
++			else
++				vmx->nested.msrs.secondary_ctls_high &=
++					~SECONDARY_EXEC_RDSEED_EXITING;
++		}
++	}
++
++	vmx->secondary_exec_control = exec_control;
++}
++
++static void ept_set_mmio_spte_mask(void)
++{
++	/*
++	 * EPT Misconfigurations can be generated if the value of bits 2:0
++	 * of an EPT paging-structure entry is 110b (write/execute).
++	 */
++	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
++				   VMX_EPT_MISCONFIG_WX_VALUE);
++}
++
++#define VMX_XSS_EXIT_BITMAP 0
++/*
++ * Sets up the vmcs for emulated real mode.
++ */
++static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
++{
++	int i;
++
++	if (enable_shadow_vmcs) {
++		/*
++		 * At vCPU creation, "VMWRITE to any supported field
++		 * in the VMCS" is supported, so use the more
++		 * permissive vmx_vmread_bitmap to specify both read
++		 * and write permissions for the shadow VMCS.
++		 */
++		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
++		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
++	}
++	if (cpu_has_vmx_msr_bitmap())
++		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
++
++	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
++
++	/* Control */
++	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
++	vmx->hv_deadline_tsc = -1;
++
++	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
++
++	if (cpu_has_secondary_exec_ctrls()) {
++		vmx_compute_secondary_exec_control(vmx);
++		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
++			     vmx->secondary_exec_control);
++	}
++
++	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
++		vmcs_write64(EOI_EXIT_BITMAP0, 0);
++		vmcs_write64(EOI_EXIT_BITMAP1, 0);
++		vmcs_write64(EOI_EXIT_BITMAP2, 0);
++		vmcs_write64(EOI_EXIT_BITMAP3, 0);
++
++		vmcs_write16(GUEST_INTR_STATUS, 0);
++
++		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
++		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
++	}
++
++	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
++		vmcs_write32(PLE_GAP, ple_gap);
++		vmx->ple_window = ple_window;
++		vmx->ple_window_dirty = true;
++	}
++
++	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
++	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
++	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
++
++	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
++	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
++	vmx_set_constant_host_state(vmx);
++	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
++	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
++
++	if (cpu_has_vmx_vmfunc())
++		vmcs_write64(VM_FUNCTION_CONTROL, 0);
++
++	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
++	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
++	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
++	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
++	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
++
++	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
++		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
++
++	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
++		u32 index = vmx_msr_index[i];
++		u32 data_low, data_high;
++		int j = vmx->nmsrs;
++
++		if (rdmsr_safe(index, &data_low, &data_high) < 0)
++			continue;
++		if (wrmsr_safe(index, data_low, data_high) < 0)
++			continue;
++		vmx->guest_msrs[j].index = i;
++		vmx->guest_msrs[j].data = 0;
++		vmx->guest_msrs[j].mask = -1ull;
++		++vmx->nmsrs;
++	}
++
++	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
++
++	/* 22.2.1, 20.8.1 */
++	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
++
++	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
++	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
++
++	set_cr4_guest_host_mask(vmx);
++
++	if (vmx_xsaves_supported())
++		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
++
++	if (enable_pml) {
++		ASSERT(vmx->pml_pg);
++		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
++		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
++	}
++
++	if (cpu_has_vmx_encls_vmexit())
++		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
++}
++
++static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct msr_data apic_base_msr;
++	u64 cr0;
++
++	vmx->rmode.vm86_active = 0;
++	vmx->spec_ctrl = 0;
++
++	vcpu->arch.microcode_version = 0x100000000ULL;
++	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
++	kvm_set_cr8(vcpu, 0);
++
++	if (!init_event) {
++		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
++				     MSR_IA32_APICBASE_ENABLE;
++		if (kvm_vcpu_is_reset_bsp(vcpu))
++			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
++		apic_base_msr.host_initiated = true;
++		kvm_set_apic_base(vcpu, &apic_base_msr);
++	}
++
++	vmx_segment_cache_clear(vmx);
++
++	seg_setup(VCPU_SREG_CS);
++	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
++	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
++
++	seg_setup(VCPU_SREG_DS);
++	seg_setup(VCPU_SREG_ES);
++	seg_setup(VCPU_SREG_FS);
++	seg_setup(VCPU_SREG_GS);
++	seg_setup(VCPU_SREG_SS);
++
++	vmcs_write16(GUEST_TR_SELECTOR, 0);
++	vmcs_writel(GUEST_TR_BASE, 0);
++	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
++	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
++
++	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
++	vmcs_writel(GUEST_LDTR_BASE, 0);
++	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
++	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
++
++	if (!init_event) {
++		vmcs_write32(GUEST_SYSENTER_CS, 0);
++		vmcs_writel(GUEST_SYSENTER_ESP, 0);
++		vmcs_writel(GUEST_SYSENTER_EIP, 0);
++		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
++	}
++
++	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
++	kvm_rip_write(vcpu, 0xfff0);
++
++	vmcs_writel(GUEST_GDTR_BASE, 0);
++	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
++
++	vmcs_writel(GUEST_IDTR_BASE, 0);
++	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
++
++	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
++	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
++	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
++	if (kvm_mpx_supported())
++		vmcs_write64(GUEST_BNDCFGS, 0);
++
++	setup_msrs(vmx);
++
++	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
++
++	if (cpu_has_vmx_tpr_shadow() && !init_event) {
++		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
++		if (cpu_need_tpr_shadow(vcpu))
++			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
++				     __pa(vcpu->arch.apic->regs));
++		vmcs_write32(TPR_THRESHOLD, 0);
++	}
++
++	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
++
++	if (vmx->vpid != 0)
++		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
++
++	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
++	vmx->vcpu.arch.cr0 = cr0;
++	vmx_set_cr0(vcpu, cr0); /* enter rmode */
++	vmx_set_cr4(vcpu, 0);
++	vmx_set_efer(vcpu, 0);
++
++	update_exception_bitmap(vcpu);
++
++	vpid_sync_context(vmx->vpid);
++	if (init_event)
++		vmx_clear_hlt(vcpu);
++
++	vmx_update_fb_clear_dis(vcpu, vmx);
++}
++
++/*
++ * In nested virtualization, check if L1 asked to exit on external interrupts.
++ * For most existing hypervisors, this will always return true.
++ */
++static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
++{
++	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
++		PIN_BASED_EXT_INTR_MASK;
++}
++
++/*
++ * In nested virtualization, check if L1 has set
++ * VM_EXIT_ACK_INTR_ON_EXIT
++ */
++static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
++{
++	return get_vmcs12(vcpu)->vm_exit_controls &
++		VM_EXIT_ACK_INTR_ON_EXIT;
++}
++
++static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
++{
++	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
++}
++
++static void enable_irq_window(struct kvm_vcpu *vcpu)
++{
++	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
++		      CPU_BASED_VIRTUAL_INTR_PENDING);
++}
++
++static void enable_nmi_window(struct kvm_vcpu *vcpu)
++{
++	if (!enable_vnmi ||
++	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
++		enable_irq_window(vcpu);
++		return;
++	}
++
++	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
++		      CPU_BASED_VIRTUAL_NMI_PENDING);
++}
++
++static void vmx_inject_irq(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	uint32_t intr;
++	int irq = vcpu->arch.interrupt.nr;
++
++	trace_kvm_inj_virq(irq);
++
++	++vcpu->stat.irq_injections;
++	if (vmx->rmode.vm86_active) {
++		int inc_eip = 0;
++		if (vcpu->arch.interrupt.soft)
++			inc_eip = vcpu->arch.event_exit_inst_len;
++		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
++			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
++		return;
++	}
++	intr = irq | INTR_INFO_VALID_MASK;
++	if (vcpu->arch.interrupt.soft) {
++		intr |= INTR_TYPE_SOFT_INTR;
++		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
++			     vmx->vcpu.arch.event_exit_inst_len);
++	} else
++		intr |= INTR_TYPE_EXT_INTR;
++	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
++
++	vmx_clear_hlt(vcpu);
++}
++
++static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (!enable_vnmi) {
++		/*
++		 * Tracking the NMI-blocked state in software is built upon
++		 * finding the next open IRQ window. This, in turn, depends on
++		 * well-behaving guests: They have to keep IRQs disabled at
++		 * least as long as the NMI handler runs. Otherwise we may
++		 * cause NMI nesting, maybe breaking the guest. But as this is
++		 * highly unlikely, we can live with the residual risk.
++		 */
++		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
++		vmx->loaded_vmcs->vnmi_blocked_time = 0;
++	}
++
++	++vcpu->stat.nmi_injections;
++	vmx->loaded_vmcs->nmi_known_unmasked = false;
++
++	if (vmx->rmode.vm86_active) {
++		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
++			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
++		return;
++	}
++
++	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
++			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
++
++	vmx_clear_hlt(vcpu);
++}
++
++static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	bool masked;
++
++	if (!enable_vnmi)
++		return vmx->loaded_vmcs->soft_vnmi_blocked;
++	if (vmx->loaded_vmcs->nmi_known_unmasked)
++		return false;
++	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
++	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
++	return masked;
++}
++
++static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (!enable_vnmi) {
++		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
++			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
++			vmx->loaded_vmcs->vnmi_blocked_time = 0;
++		}
++	} else {
++		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
++		if (masked)
++			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
++				      GUEST_INTR_STATE_NMI);
++		else
++			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
++					GUEST_INTR_STATE_NMI);
++	}
++}
++
++static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
++{
++	if (to_vmx(vcpu)->nested.nested_run_pending)
++		return 0;
++
++	if (!enable_vnmi &&
++	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
++		return 0;
++
++	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
++		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
++		   | GUEST_INTR_STATE_NMI));
++}
++
++static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
++{
++	if (to_vmx(vcpu)->nested.nested_run_pending)
++		return false;
++
++	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
++		return true;
++
++	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
++		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
++			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
++}
++
++static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
++{
++	int ret;
++
++	if (enable_unrestricted_guest)
++		return 0;
++
++	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
++				    PAGE_SIZE * 3);
++	if (ret)
++		return ret;
++	to_kvm_vmx(kvm)->tss_addr = addr;
++	return init_rmode_tss(kvm);
++}
++
++static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
++{
++	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
++	return 0;
++}
++
++static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
++{
++	switch (vec) {
++	case BP_VECTOR:
++		/*
++		 * Update instruction length as we may reinject the exception
++		 * from user space while in guest debugging mode.
++		 */
++		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
++			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
++			return false;
++		/* fall through */
++	case DB_VECTOR:
++		if (vcpu->guest_debug &
++			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
++			return false;
++		/* fall through */
++	case DE_VECTOR:
++	case OF_VECTOR:
++	case BR_VECTOR:
++	case UD_VECTOR:
++	case DF_VECTOR:
++	case SS_VECTOR:
++	case GP_VECTOR:
++	case MF_VECTOR:
++		return true;
++	break;
++	}
++	return false;
++}
++
++static int handle_rmode_exception(struct kvm_vcpu *vcpu,
++				  int vec, u32 err_code)
++{
++	/*
++	 * Instruction with address size override prefix opcode 0x67
++	 * Cause the #SS fault with 0 error code in VM86 mode.
++	 */
++	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
++		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
++			if (vcpu->arch.halt_request) {
++				vcpu->arch.halt_request = 0;
++				return kvm_vcpu_halt(vcpu);
++			}
++			return 1;
++		}
++		return 0;
++	}
++
++	/*
++	 * Forward all other exceptions that are valid in real mode.
++	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
++	 *        the required debugging infrastructure rework.
++	 */
++	kvm_queue_exception(vcpu, vec);
++	return 1;
++}
++
++/*
++ * Trigger machine check on the host. We assume all the MSRs are already set up
++ * by the CPU and that we still run on the same CPU as the MCE occurred on.
++ * We pass a fake environment to the machine check handler because we want
++ * the guest to be always treated like user space, no matter what context
++ * it used internally.
++ */
++static void kvm_machine_check(void)
++{
++#if defined(CONFIG_X86_MCE)
++	struct pt_regs regs = {
++		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
++		.flags = X86_EFLAGS_IF,
++	};
++
++	do_machine_check(&regs, 0);
++#endif
++}
++
++static int handle_machine_check(struct kvm_vcpu *vcpu)
++{
++	/* already handled by vcpu_run */
++	return 1;
++}
++
++static int handle_exception(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct kvm_run *kvm_run = vcpu->run;
++	u32 intr_info, ex_no, error_code;
++	unsigned long cr2, rip, dr6;
++	u32 vect_info;
++	enum emulation_result er;
++
++	vect_info = vmx->idt_vectoring_info;
++	intr_info = vmx->exit_intr_info;
++
++	if (is_machine_check(intr_info))
++		return handle_machine_check(vcpu);
++
++	if (is_nmi(intr_info))
++		return 1;  /* already handled by vmx_vcpu_run() */
++
++	if (is_invalid_opcode(intr_info))
++		return handle_ud(vcpu);
++
++	error_code = 0;
++	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
++		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
++
++	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
++		WARN_ON_ONCE(!enable_vmware_backdoor);
++		er = kvm_emulate_instruction(vcpu,
++			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
++		if (er == EMULATE_USER_EXIT)
++			return 0;
++		else if (er != EMULATE_DONE)
++			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
++		return 1;
++	}
++
++	/*
++	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
++	 * MMIO, it is better to report an internal error.
++	 * See the comments in vmx_handle_exit.
++	 */
++	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
++	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
++		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
++		vcpu->run->internal.ndata = 3;
++		vcpu->run->internal.data[0] = vect_info;
++		vcpu->run->internal.data[1] = intr_info;
++		vcpu->run->internal.data[2] = error_code;
++		return 0;
++	}
++
++	if (is_page_fault(intr_info)) {
++		cr2 = vmcs_readl(EXIT_QUALIFICATION);
++		/* EPT won't cause page fault directly */
++		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
++		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
++	}
++
++	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
++
++	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
++		return handle_rmode_exception(vcpu, ex_no, error_code);
++
++	switch (ex_no) {
++	case AC_VECTOR:
++		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
++		return 1;
++	case DB_VECTOR:
++		dr6 = vmcs_readl(EXIT_QUALIFICATION);
++		if (!(vcpu->guest_debug &
++		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
++			vcpu->arch.dr6 &= ~15;
++			vcpu->arch.dr6 |= dr6 | DR6_RTM;
++			if (is_icebp(intr_info))
++				skip_emulated_instruction(vcpu);
++
++			kvm_queue_exception(vcpu, DB_VECTOR);
++			return 1;
++		}
++		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
++		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
++		/* fall through */
++	case BP_VECTOR:
++		/*
++		 * Update instruction length as we may reinject #BP from
++		 * user space while in guest debugging mode. Reading it for
++		 * #DB as well causes no harm, it is not used in that case.
++		 */
++		vmx->vcpu.arch.event_exit_inst_len =
++			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++		kvm_run->exit_reason = KVM_EXIT_DEBUG;
++		rip = kvm_rip_read(vcpu);
++		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
++		kvm_run->debug.arch.exception = ex_no;
++		break;
++	default:
++		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
++		kvm_run->ex.exception = ex_no;
++		kvm_run->ex.error_code = error_code;
++		break;
++	}
++	return 0;
++}
++
++static int handle_external_interrupt(struct kvm_vcpu *vcpu)
++{
++	++vcpu->stat.irq_exits;
++	return 1;
++}
++
++static int handle_triple_fault(struct kvm_vcpu *vcpu)
++{
++	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
++	vcpu->mmio_needed = 0;
++	return 0;
++}
++
++static int handle_io(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification;
++	int size, in, string;
++	unsigned port;
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	string = (exit_qualification & 16) != 0;
++
++	++vcpu->stat.io_exits;
++
++	if (string)
++		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
++
++	port = exit_qualification >> 16;
++	size = (exit_qualification & 7) + 1;
++	in = (exit_qualification & 8) != 0;
++
++	return kvm_fast_pio(vcpu, size, port, in);
++}
++
++static void
++vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
++{
++	/*
++	 * Patch in the VMCALL instruction:
++	 */
++	hypercall[0] = 0x0f;
++	hypercall[1] = 0x01;
++	hypercall[2] = 0xc1;
++}
++
++/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
++static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	if (is_guest_mode(vcpu)) {
++		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++		unsigned long orig_val = val;
++
++		/*
++		 * We get here when L2 changed cr0 in a way that did not change
++		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
++		 * but did change L0 shadowed bits. So we first calculate the
++		 * effective cr0 value that L1 would like to write into the
++		 * hardware. It consists of the L2-owned bits from the new
++		 * value combined with the L1-owned bits from L1's guest_cr0.
++		 */
++		val = (val & ~vmcs12->cr0_guest_host_mask) |
++			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
++
++		if (!nested_guest_cr0_valid(vcpu, val))
++			return 1;
++
++		if (kvm_set_cr0(vcpu, val))
++			return 1;
++		vmcs_writel(CR0_READ_SHADOW, orig_val);
++		return 0;
++	} else {
++		if (to_vmx(vcpu)->nested.vmxon &&
++		    !nested_host_cr0_valid(vcpu, val))
++			return 1;
++
++		return kvm_set_cr0(vcpu, val);
++	}
++}
++
++static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	if (is_guest_mode(vcpu)) {
++		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++		unsigned long orig_val = val;
++
++		/* analogously to handle_set_cr0 */
++		val = (val & ~vmcs12->cr4_guest_host_mask) |
++			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
++		if (kvm_set_cr4(vcpu, val))
++			return 1;
++		vmcs_writel(CR4_READ_SHADOW, orig_val);
++		return 0;
++	} else
++		return kvm_set_cr4(vcpu, val);
++}
++
++static int handle_desc(struct kvm_vcpu *vcpu)
++{
++	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
++	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
++}
++
++static int handle_cr(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification, val;
++	int cr;
++	int reg;
++	int err;
++	int ret;
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	cr = exit_qualification & 15;
++	reg = (exit_qualification >> 8) & 15;
++	switch ((exit_qualification >> 4) & 3) {
++	case 0: /* mov to cr */
++		val = kvm_register_readl(vcpu, reg);
++		trace_kvm_cr_write(cr, val);
++		switch (cr) {
++		case 0:
++			err = handle_set_cr0(vcpu, val);
++			return kvm_complete_insn_gp(vcpu, err);
++		case 3:
++			WARN_ON_ONCE(enable_unrestricted_guest);
++			err = kvm_set_cr3(vcpu, val);
++			return kvm_complete_insn_gp(vcpu, err);
++		case 4:
++			err = handle_set_cr4(vcpu, val);
++			return kvm_complete_insn_gp(vcpu, err);
++		case 8: {
++				u8 cr8_prev = kvm_get_cr8(vcpu);
++				u8 cr8 = (u8)val;
++				err = kvm_set_cr8(vcpu, cr8);
++				ret = kvm_complete_insn_gp(vcpu, err);
++				if (lapic_in_kernel(vcpu))
++					return ret;
++				if (cr8_prev <= cr8)
++					return ret;
++				/*
++				 * TODO: we might be squashing a
++				 * KVM_GUESTDBG_SINGLESTEP-triggered
++				 * KVM_EXIT_DEBUG here.
++				 */
++				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
++				return 0;
++			}
++		}
++		break;
++	case 2: /* clts */
++		WARN_ONCE(1, "Guest should always own CR0.TS");
++		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
++		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
++		return kvm_skip_emulated_instruction(vcpu);
++	case 1: /*mov from cr*/
++		switch (cr) {
++		case 3:
++			WARN_ON_ONCE(enable_unrestricted_guest);
++			val = kvm_read_cr3(vcpu);
++			kvm_register_write(vcpu, reg, val);
++			trace_kvm_cr_read(cr, val);
++			return kvm_skip_emulated_instruction(vcpu);
++		case 8:
++			val = kvm_get_cr8(vcpu);
++			kvm_register_write(vcpu, reg, val);
++			trace_kvm_cr_read(cr, val);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++		break;
++	case 3: /* lmsw */
++		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
++		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
++		kvm_lmsw(vcpu, val);
++
++		return kvm_skip_emulated_instruction(vcpu);
++	default:
++		break;
++	}
++	vcpu->run->exit_reason = 0;
++	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
++	       (int)(exit_qualification >> 4) & 3, cr);
++	return 0;
++}
++
++static int handle_dr(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification;
++	int dr, dr7, reg;
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
++
++	/* First, if DR does not exist, trigger UD */
++	if (!kvm_require_dr(vcpu, dr))
++		return 1;
++
++	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
++	if (!kvm_require_cpl(vcpu, 0))
++		return 1;
++	dr7 = vmcs_readl(GUEST_DR7);
++	if (dr7 & DR7_GD) {
++		/*
++		 * As the vm-exit takes precedence over the debug trap, we
++		 * need to emulate the latter, either for the host or the
++		 * guest debugging itself.
++		 */
++		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
++			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
++			vcpu->run->debug.arch.dr7 = dr7;
++			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
++			vcpu->run->debug.arch.exception = DB_VECTOR;
++			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
++			return 0;
++		} else {
++			vcpu->arch.dr6 &= ~15;
++			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
++			kvm_queue_exception(vcpu, DB_VECTOR);
++			return 1;
++		}
++	}
++
++	if (vcpu->guest_debug == 0) {
++		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
++				CPU_BASED_MOV_DR_EXITING);
++
++		/*
++		 * No more DR vmexits; force a reload of the debug registers
++		 * and reenter on this instruction.  The next vmexit will
++		 * retrieve the full state of the debug registers.
++		 */
++		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
++		return 1;
++	}
++
++	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
++	if (exit_qualification & TYPE_MOV_FROM_DR) {
++		unsigned long val;
++
++		if (kvm_get_dr(vcpu, dr, &val))
++			return 1;
++		kvm_register_write(vcpu, reg, val);
++	} else
++		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
++			return 1;
++
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
++{
++	return vcpu->arch.dr6;
++}
++
++static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
++{
++}
++
++static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
++{
++	get_debugreg(vcpu->arch.db[0], 0);
++	get_debugreg(vcpu->arch.db[1], 1);
++	get_debugreg(vcpu->arch.db[2], 2);
++	get_debugreg(vcpu->arch.db[3], 3);
++	get_debugreg(vcpu->arch.dr6, 6);
++	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
++
++	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
++	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
++}
++
++static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	vmcs_writel(GUEST_DR7, val);
++}
++
++static int handle_cpuid(struct kvm_vcpu *vcpu)
++{
++	return kvm_emulate_cpuid(vcpu);
++}
++
++static int handle_rdmsr(struct kvm_vcpu *vcpu)
++{
++	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
++	struct msr_data msr_info;
++
++	msr_info.index = ecx;
++	msr_info.host_initiated = false;
++	if (vmx_get_msr(vcpu, &msr_info)) {
++		trace_kvm_msr_read_ex(ecx);
++		kvm_inject_gp(vcpu, 0);
++		return 1;
++	}
++
++	trace_kvm_msr_read(ecx, msr_info.data);
++
++	/* FIXME: handling of bits 32:63 of rax, rdx */
++	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
++	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_wrmsr(struct kvm_vcpu *vcpu)
++{
++	struct msr_data msr;
++	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
++	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
++		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
++
++	msr.data = data;
++	msr.index = ecx;
++	msr.host_initiated = false;
++	if (kvm_set_msr(vcpu, &msr) != 0) {
++		trace_kvm_msr_write_ex(ecx, data);
++		kvm_inject_gp(vcpu, 0);
++		return 1;
++	}
++
++	trace_kvm_msr_write(ecx, data);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
++{
++	kvm_apic_update_ppr(vcpu);
++	return 1;
++}
++
++static int handle_interrupt_window(struct kvm_vcpu *vcpu)
++{
++	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
++			CPU_BASED_VIRTUAL_INTR_PENDING);
++
++	kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++	++vcpu->stat.irq_window_exits;
++	return 1;
++}
++
++static int handle_halt(struct kvm_vcpu *vcpu)
++{
++	return kvm_emulate_halt(vcpu);
++}
++
++static int handle_vmcall(struct kvm_vcpu *vcpu)
++{
++	return kvm_emulate_hypercall(vcpu);
++}
++
++static int handle_invd(struct kvm_vcpu *vcpu)
++{
++	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
++}
++
++static int handle_invlpg(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++	kvm_mmu_invlpg(vcpu, exit_qualification);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_rdpmc(struct kvm_vcpu *vcpu)
++{
++	int err;
++
++	err = kvm_rdpmc(vcpu);
++	return kvm_complete_insn_gp(vcpu, err);
++}
++
++static int handle_wbinvd(struct kvm_vcpu *vcpu)
++{
++	return kvm_emulate_wbinvd(vcpu);
++}
++
++static int handle_xsetbv(struct kvm_vcpu *vcpu)
++{
++	u64 new_bv = kvm_read_edx_eax(vcpu);
++	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
++
++	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
++		return kvm_skip_emulated_instruction(vcpu);
++	return 1;
++}
++
++static int handle_xsaves(struct kvm_vcpu *vcpu)
++{
++	kvm_skip_emulated_instruction(vcpu);
++	WARN(1, "this should never happen\n");
++	return 1;
++}
++
++static int handle_xrstors(struct kvm_vcpu *vcpu)
++{
++	kvm_skip_emulated_instruction(vcpu);
++	WARN(1, "this should never happen\n");
++	return 1;
++}
++
++static int handle_apic_access(struct kvm_vcpu *vcpu)
++{
++	if (likely(fasteoi)) {
++		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++		int access_type, offset;
++
++		access_type = exit_qualification & APIC_ACCESS_TYPE;
++		offset = exit_qualification & APIC_ACCESS_OFFSET;
++		/*
++		 * Sane guest uses MOV to write EOI, with written value
++		 * not cared. So make a short-circuit here by avoiding
++		 * heavy instruction emulation.
++		 */
++		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
++		    (offset == APIC_EOI)) {
++			kvm_lapic_set_eoi(vcpu);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++	}
++	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
++}
++
++static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	int vector = exit_qualification & 0xff;
++
++	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
++	kvm_apic_set_eoi_accelerated(vcpu, vector);
++	return 1;
++}
++
++static int handle_apic_write(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	u32 offset = exit_qualification & 0xfff;
++
++	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
++	kvm_apic_write_nodecode(vcpu, offset);
++	return 1;
++}
++
++static int handle_task_switch(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned long exit_qualification;
++	bool has_error_code = false;
++	u32 error_code = 0;
++	u16 tss_selector;
++	int reason, type, idt_v, idt_index;
++
++	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
++	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
++	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++	reason = (u32)exit_qualification >> 30;
++	if (reason == TASK_SWITCH_GATE && idt_v) {
++		switch (type) {
++		case INTR_TYPE_NMI_INTR:
++			vcpu->arch.nmi_injected = false;
++			vmx_set_nmi_mask(vcpu, true);
++			break;
++		case INTR_TYPE_EXT_INTR:
++		case INTR_TYPE_SOFT_INTR:
++			kvm_clear_interrupt_queue(vcpu);
++			break;
++		case INTR_TYPE_HARD_EXCEPTION:
++			if (vmx->idt_vectoring_info &
++			    VECTORING_INFO_DELIVER_CODE_MASK) {
++				has_error_code = true;
++				error_code =
++					vmcs_read32(IDT_VECTORING_ERROR_CODE);
++			}
++			/* fall through */
++		case INTR_TYPE_SOFT_EXCEPTION:
++			kvm_clear_exception_queue(vcpu);
++			break;
++		default:
++			break;
++		}
++	}
++	tss_selector = exit_qualification;
++
++	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
++		       type != INTR_TYPE_EXT_INTR &&
++		       type != INTR_TYPE_NMI_INTR))
++		skip_emulated_instruction(vcpu);
++
++	if (kvm_task_switch(vcpu, tss_selector,
++			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
++			    has_error_code, error_code) == EMULATE_FAIL) {
++		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
++		vcpu->run->internal.ndata = 0;
++		return 0;
++	}
++
++	/*
++	 * TODO: What about debug traps on tss switch?
++	 *       Are we supposed to inject them and update dr6?
++	 */
++
++	return 1;
++}
++
++static int handle_ept_violation(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification;
++	gpa_t gpa;
++	u64 error_code;
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++	/*
++	 * EPT violation happened while executing iret from NMI,
++	 * "blocked by NMI" bit has to be set before next VM entry.
++	 * There are errata that may cause this bit to not be set:
++	 * AAK134, BY25.
++	 */
++	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
++			enable_vnmi &&
++			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
++		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
++
++	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
++	trace_kvm_page_fault(gpa, exit_qualification);
++
++	/* Is it a read fault? */
++	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
++		     ? PFERR_USER_MASK : 0;
++	/* Is it a write fault? */
++	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
++		      ? PFERR_WRITE_MASK : 0;
++	/* Is it a fetch fault? */
++	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
++		      ? PFERR_FETCH_MASK : 0;
++	/* ept page table entry is present? */
++	error_code |= (exit_qualification &
++		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
++			EPT_VIOLATION_EXECUTABLE))
++		      ? PFERR_PRESENT_MASK : 0;
++
++	error_code |= (exit_qualification & 0x100) != 0 ?
++	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
++
++	vcpu->arch.exit_qualification = exit_qualification;
++	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
++}
++
++static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
++{
++	gpa_t gpa;
++
++	/*
++	 * A nested guest cannot optimize MMIO vmexits, because we have an
++	 * nGPA here instead of the required GPA.
++	 */
++	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
++	if (!is_guest_mode(vcpu) &&
++	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
++		trace_kvm_fast_mmio(gpa);
++		/*
++		 * Doing kvm_skip_emulated_instruction() depends on undefined
++		 * behavior: Intel's manual doesn't mandate
++		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
++		 * occurs and while on real hardware it was observed to be set,
++		 * other hypervisors (namely Hyper-V) don't set it, we end up
++		 * advancing IP with some random value. Disable fast mmio when
++		 * running nested and keep it for real hardware in hope that
++		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
++		 */
++		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
++			return kvm_skip_emulated_instruction(vcpu);
++		else
++			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
++								EMULATE_DONE;
++	}
++
++	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
++}
++
++static int handle_nmi_window(struct kvm_vcpu *vcpu)
++{
++	WARN_ON_ONCE(!enable_vnmi);
++	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
++			CPU_BASED_VIRTUAL_NMI_PENDING);
++	++vcpu->stat.nmi_window_exits;
++	kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++	return 1;
++}
++
++static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	enum emulation_result err = EMULATE_DONE;
++	int ret = 1;
++	u32 cpu_exec_ctrl;
++	bool intr_window_requested;
++	unsigned count = 130;
++
++	/*
++	 * We should never reach the point where we are emulating L2
++	 * due to invalid guest state as that means we incorrectly
++	 * allowed a nested VMEntry with an invalid vmcs12.
++	 */
++	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
++
++	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
++	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
++
++	while (vmx->emulation_required && count-- != 0) {
++		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
++			return handle_interrupt_window(&vmx->vcpu);
++
++		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
++			return 1;
++
++		err = kvm_emulate_instruction(vcpu, 0);
++
++		if (err == EMULATE_USER_EXIT) {
++			++vcpu->stat.mmio_exits;
++			ret = 0;
++			goto out;
++		}
++
++		if (err != EMULATE_DONE)
++			goto emulation_error;
++
++		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
++		    vcpu->arch.exception.pending)
++			goto emulation_error;
++
++		if (vcpu->arch.halt_request) {
++			vcpu->arch.halt_request = 0;
++			ret = kvm_vcpu_halt(vcpu);
++			goto out;
++		}
++
++		if (signal_pending(current))
++			goto out;
++		if (need_resched())
++			schedule();
++	}
++
++out:
++	return ret;
++
++emulation_error:
++	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
++	vcpu->run->internal.ndata = 0;
++	return 0;
++}
++
++static void grow_ple_window(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int old = vmx->ple_window;
++
++	vmx->ple_window = __grow_ple_window(old, ple_window,
++					    ple_window_grow,
++					    ple_window_max);
++
++	if (vmx->ple_window != old)
++		vmx->ple_window_dirty = true;
++
++	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
++}
++
++static void shrink_ple_window(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int old = vmx->ple_window;
++
++	vmx->ple_window = __shrink_ple_window(old, ple_window,
++					      ple_window_shrink,
++					      ple_window);
++
++	if (vmx->ple_window != old)
++		vmx->ple_window_dirty = true;
++
++	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
++}
++
++/*
++ * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
++ */
++static void wakeup_handler(void)
++{
++	struct kvm_vcpu *vcpu;
++	int cpu = smp_processor_id();
++
++	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
++	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
++			blocked_vcpu_list) {
++		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++		if (pi_test_on(pi_desc) == 1)
++			kvm_vcpu_kick(vcpu);
++	}
++	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
++}
++
++static void vmx_enable_tdp(void)
++{
++	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
++		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
++		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
++		0ull, VMX_EPT_EXECUTABLE_MASK,
++		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
++		VMX_EPT_RWX_MASK, 0ull);
++
++	ept_set_mmio_spte_mask();
++	kvm_enable_tdp();
++}
++
++static __init int hardware_setup(void)
++{
++	unsigned long host_bndcfgs;
++	int r = -ENOMEM, i;
++
++	rdmsrl_safe(MSR_EFER, &host_efer);
++
++	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
++		kvm_define_shared_msr(i, vmx_msr_index[i]);
++
++	for (i = 0; i < VMX_BITMAP_NR; i++) {
++		vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
++		if (!vmx_bitmap[i])
++			goto out;
++	}
++
++	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
++	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
++
++	if (setup_vmcs_config(&vmcs_config) < 0) {
++		r = -EIO;
++		goto out;
++	}
++
++	if (boot_cpu_has(X86_FEATURE_NX))
++		kvm_enable_efer_bits(EFER_NX);
++
++	if (boot_cpu_has(X86_FEATURE_MPX)) {
++		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
++		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
++	}
++
++	if (boot_cpu_has(X86_FEATURE_XSAVES))
++		rdmsrl(MSR_IA32_XSS, host_xss);
++
++	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
++		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
++		enable_vpid = 0;
++
++	if (!cpu_has_vmx_ept() ||
++	    !cpu_has_vmx_ept_4levels() ||
++	    !cpu_has_vmx_ept_mt_wb() ||
++	    !cpu_has_vmx_invept_global())
++		enable_ept = 0;
++
++	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
++		enable_ept_ad_bits = 0;
++
++	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
++		enable_unrestricted_guest = 0;
++
++	if (!cpu_has_vmx_flexpriority())
++		flexpriority_enabled = 0;
++
++	if (!cpu_has_virtual_nmis())
++		enable_vnmi = 0;
++
++	/*
++	 * set_apic_access_page_addr() is used to reload apic access
++	 * page upon invalidation.  No need to do anything if not
++	 * using the APIC_ACCESS_ADDR VMCS field.
++	 */
++	if (!flexpriority_enabled)
++		kvm_x86_ops->set_apic_access_page_addr = NULL;
++
++	if (!cpu_has_vmx_tpr_shadow())
++		kvm_x86_ops->update_cr8_intercept = NULL;
++
++	if (enable_ept && !cpu_has_vmx_ept_2m_page())
++		kvm_disable_largepages();
++
++#if IS_ENABLED(CONFIG_HYPERV)
++	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
++	    && enable_ept)
++		kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
++#endif
++
++	if (!cpu_has_vmx_ple()) {
++		ple_gap = 0;
++		ple_window = 0;
++		ple_window_grow = 0;
++		ple_window_max = 0;
++		ple_window_shrink = 0;
++	}
++
++	if (!cpu_has_vmx_apicv()) {
++		enable_apicv = 0;
++		kvm_x86_ops->sync_pir_to_irr = NULL;
++	}
++
++	if (cpu_has_vmx_tsc_scaling()) {
++		kvm_has_tsc_control = true;
++		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
++		kvm_tsc_scaling_ratio_frac_bits = 48;
++	}
++
++	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
++
++	if (enable_ept)
++		vmx_enable_tdp();
++	else
++		kvm_disable_tdp();
++
++	if (!nested) {
++		kvm_x86_ops->get_nested_state = NULL;
++		kvm_x86_ops->set_nested_state = NULL;
++	}
++
++	/*
++	 * Only enable PML when hardware supports PML feature, and both EPT
++	 * and EPT A/D bit features are enabled -- PML depends on them to work.
++	 */
++	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
++		enable_pml = 0;
++
++	if (!enable_pml) {
++		kvm_x86_ops->slot_enable_log_dirty = NULL;
++		kvm_x86_ops->slot_disable_log_dirty = NULL;
++		kvm_x86_ops->flush_log_dirty = NULL;
++		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
++	}
++
++	if (!cpu_has_vmx_preemption_timer())
++		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
++
++	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
++		u64 vmx_msr;
++
++		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
++		cpu_preemption_timer_multi =
++			 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
++	} else {
++		kvm_x86_ops->set_hv_timer = NULL;
++		kvm_x86_ops->cancel_hv_timer = NULL;
++	}
++
++	if (!cpu_has_vmx_shadow_vmcs())
++		enable_shadow_vmcs = 0;
++	if (enable_shadow_vmcs)
++		init_vmcs_shadow_fields();
++
++	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
++	nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
++
++	kvm_mce_cap_supported |= MCG_LMCE_P;
++
++	r = alloc_kvm_area();
++	if (r)
++		goto out;
++	return 0;
++
++out:
++	for (i = 0; i < VMX_BITMAP_NR; i++)
++		free_page((unsigned long)vmx_bitmap[i]);
++
++	return r;
++}
++
++static __exit void hardware_unsetup(void)
++{
++	int i;
++
++	for (i = 0; i < VMX_BITMAP_NR; i++)
++		free_page((unsigned long)vmx_bitmap[i]);
++
++	free_kvm_area();
++}
++
++/*
++ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
++ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
++ */
++static int handle_pause(struct kvm_vcpu *vcpu)
++{
++	if (!kvm_pause_in_guest(vcpu->kvm))
++		grow_ple_window(vcpu);
++
++	/*
++	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
++	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
++	 * never set PAUSE_EXITING and just set PLE if supported,
++	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
++	 */
++	kvm_vcpu_on_spin(vcpu, true);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_nop(struct kvm_vcpu *vcpu)
++{
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_mwait(struct kvm_vcpu *vcpu)
++{
++	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
++	return handle_nop(vcpu);
++}
++
++static int handle_invalid_op(struct kvm_vcpu *vcpu)
++{
++	kvm_queue_exception(vcpu, UD_VECTOR);
++	return 1;
++}
++
++static int handle_monitor_trap(struct kvm_vcpu *vcpu)
++{
++	return 1;
++}
++
++static int handle_monitor(struct kvm_vcpu *vcpu)
++{
++	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
++	return handle_nop(vcpu);
++}
++
++/*
++ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
++ * set the success or error code of an emulated VMX instruction, as specified
++ * by Vol 2B, VMX Instruction Reference, "Conventions".
++ */
++static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
++{
++	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
++			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
++			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
++}
++
++static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
++{
++	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
++			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
++			    X86_EFLAGS_SF | X86_EFLAGS_OF))
++			| X86_EFLAGS_CF);
++}
++
++static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
++					u32 vm_instruction_error)
++{
++	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
++		/*
++		 * failValid writes the error number to the current VMCS, which
++		 * can't be done there isn't a current VMCS.
++		 */
++		nested_vmx_failInvalid(vcpu);
++		return;
++	}
++	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
++			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
++			    X86_EFLAGS_SF | X86_EFLAGS_OF))
++			| X86_EFLAGS_ZF);
++	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
++	/*
++	 * We don't need to force a shadow sync because
++	 * VM_INSTRUCTION_ERROR is not shadowed
++	 */
++}
++
++static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
++{
++	/* TODO: not to reset guest simply here. */
++	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
++	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
++}
++
++static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
++{
++	struct vcpu_vmx *vmx =
++		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
++
++	vmx->nested.preemption_timer_expired = true;
++	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
++	kvm_vcpu_kick(&vmx->vcpu);
++
++	return HRTIMER_NORESTART;
++}
++
++/*
++ * Decode the memory-address operand of a vmx instruction, as recorded on an
++ * exit caused by such an instruction (run by a guest hypervisor).
++ * On success, returns 0. When the operand is invalid, returns 1 and throws
++ * #UD or #GP.
++ */
++static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
++				 unsigned long exit_qualification,
++				 u32 vmx_instruction_info, bool wr, gva_t *ret)
++{
++	gva_t off;
++	bool exn;
++	struct kvm_segment s;
++
++	/*
++	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
++	 * Execution", on an exit, vmx_instruction_info holds most of the
++	 * addressing components of the operand. Only the displacement part
++	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
++	 * For how an actual address is calculated from all these components,
++	 * refer to Vol. 1, "Operand Addressing".
++	 */
++	int  scaling = vmx_instruction_info & 3;
++	int  addr_size = (vmx_instruction_info >> 7) & 7;
++	bool is_reg = vmx_instruction_info & (1u << 10);
++	int  seg_reg = (vmx_instruction_info >> 15) & 7;
++	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
++	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
++	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
++	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
++
++	if (is_reg) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++
++	/* Addr = segment_base + offset */
++	/* offset = base + [index * scale] + displacement */
++	off = exit_qualification; /* holds the displacement */
++	if (addr_size == 1)
++		off = (gva_t)sign_extend64(off, 31);
++	else if (addr_size == 0)
++		off = (gva_t)sign_extend64(off, 15);
++	if (base_is_valid)
++		off += kvm_register_read(vcpu, base_reg);
++	if (index_is_valid)
++		off += kvm_register_read(vcpu, index_reg)<<scaling;
++	vmx_get_segment(vcpu, &s, seg_reg);
++
++	/*
++	 * The effective address, i.e. @off, of a memory operand is truncated
++	 * based on the address size of the instruction.  Note that this is
++	 * the *effective address*, i.e. the address prior to accounting for
++	 * the segment's base.
++	 */
++	if (addr_size == 1) /* 32 bit */
++		off &= 0xffffffff;
++	else if (addr_size == 0) /* 16 bit */
++		off &= 0xffff;
++
++	/* Checks for #GP/#SS exceptions. */
++	exn = false;
++	if (is_long_mode(vcpu)) {
++		/*
++		 * The virtual/linear address is never truncated in 64-bit
++		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
++		 * address when using FS/GS with a non-zero base.
++		 */
++		*ret = s.base + off;
++
++		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
++		 * non-canonical form. This is the only check on the memory
++		 * destination for long mode!
++		 */
++		exn = is_noncanonical_address(*ret, vcpu);
++	} else if (is_protmode(vcpu)) {
++		/*
++		 * When not in long mode, the virtual/linear address is
++		 * unconditionally truncated to 32 bits regardless of the
++		 * address size.
++		 */
++		*ret = (s.base + off) & 0xffffffff;
++
++		/* Protected mode: apply checks for segment validity in the
++		 * following order:
++		 * - segment type check (#GP(0) may be thrown)
++		 * - usability check (#GP(0)/#SS(0))
++		 * - limit check (#GP(0)/#SS(0))
++		 */
++		if (wr)
++			/* #GP(0) if the destination operand is located in a
++			 * read-only data segment or any code segment.
++			 */
++			exn = ((s.type & 0xa) == 0 || (s.type & 8));
++		else
++			/* #GP(0) if the source operand is located in an
++			 * execute-only code segment
++			 */
++			exn = ((s.type & 0xa) == 8);
++		if (exn) {
++			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
++			return 1;
++		}
++		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
++		 */
++		exn = (s.unusable != 0);
++
++		/*
++		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
++		 * outside the segment limit.  All CPUs that support VMX ignore
++		 * limit checks for flat segments, i.e. segments with base==0,
++		 * limit==0xffffffff and of type expand-up data or code.
++		 */
++		if (!(s.base == 0 && s.limit == 0xffffffff &&
++		     ((s.type & 8) || !(s.type & 4))))
++			exn = exn || (off + sizeof(u64) > s.limit);
++	}
++	if (exn) {
++		kvm_queue_exception_e(vcpu,
++				      seg_reg == VCPU_SREG_SS ?
++						SS_VECTOR : GP_VECTOR,
++				      0);
++		return 1;
++	}
++
++	return 0;
++}
++
++static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
++{
++	gva_t gva;
++	struct x86_exception e;
++
++	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
++			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
++		return 1;
++
++	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
++		kvm_inject_page_fault(vcpu, &e);
++		return 1;
++	}
++
++	return 0;
++}
++
++/*
++ * Allocate a shadow VMCS and associate it with the currently loaded
++ * VMCS, unless such a shadow VMCS already exists. The newly allocated
++ * VMCS is also VMCLEARed, so that it is ready for use.
++ */
++static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
++
++	/*
++	 * We should allocate a shadow vmcs for vmcs01 only when L1
++	 * executes VMXON and free it when L1 executes VMXOFF.
++	 * As it is invalid to execute VMXON twice, we shouldn't reach
++	 * here when vmcs01 already have an allocated shadow vmcs.
++	 */
++	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
++
++	if (!loaded_vmcs->shadow_vmcs) {
++		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
++		if (loaded_vmcs->shadow_vmcs)
++			vmcs_clear(loaded_vmcs->shadow_vmcs);
++	}
++	return loaded_vmcs->shadow_vmcs;
++}
++
++static int enter_vmx_operation(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int r;
++
++	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
++	if (r < 0)
++		goto out_vmcs02;
++
++	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
++	if (!vmx->nested.cached_vmcs12)
++		goto out_cached_vmcs12;
++
++	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
++	if (!vmx->nested.cached_shadow_vmcs12)
++		goto out_cached_shadow_vmcs12;
++
++	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
++		goto out_shadow_vmcs;
++
++	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
++		     HRTIMER_MODE_REL_PINNED);
++	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
++
++	vmx->nested.vpid02 = allocate_vpid();
++
++	vmx->nested.vmxon = true;
++	return 0;
++
++out_shadow_vmcs:
++	kfree(vmx->nested.cached_shadow_vmcs12);
++
++out_cached_shadow_vmcs12:
++	kfree(vmx->nested.cached_vmcs12);
++
++out_cached_vmcs12:
++	free_loaded_vmcs(&vmx->nested.vmcs02);
++
++out_vmcs02:
++	return -ENOMEM;
++}
++
++/*
++ * Emulate the VMXON instruction.
++ * Currently, we just remember that VMX is active, and do not save or even
++ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
++ * do not currently need to store anything in that guest-allocated memory
++ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
++ * argument is different from the VMXON pointer (which the spec says they do).
++ */
++static int handle_vmon(struct kvm_vcpu *vcpu)
++{
++	int ret;
++	gpa_t vmptr;
++	struct page *page;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
++		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
++
++	/*
++	 * The Intel VMX Instruction Reference lists a bunch of bits that are
++	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
++	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
++	 * Otherwise, we should fail with #UD.  But most faulting conditions
++	 * have already been checked by hardware, prior to the VM-exit for
++	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
++	 * that bit set to 1 in non-root mode.
++	 */
++	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++
++	/* CPL=0 must be checked manually. */
++	if (vmx_get_cpl(vcpu)) {
++		kvm_inject_gp(vcpu, 0);
++		return 1;
++	}
++
++	if (vmx->nested.vmxon) {
++		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
++			!= VMXON_NEEDED_FEATURES) {
++		kvm_inject_gp(vcpu, 0);
++		return 1;
++	}
++
++	if (nested_vmx_get_vmptr(vcpu, &vmptr))
++		return 1;
++
++	/*
++	 * SDM 3: 24.11.5
++	 * The first 4 bytes of VMXON region contain the supported
++	 * VMCS revision identifier
++	 *
++	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
++	 * which replaces physical address width with 32
++	 */
++	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
++		nested_vmx_failInvalid(vcpu);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
++	if (is_error_page(page)) {
++		nested_vmx_failInvalid(vcpu);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
++		kunmap(page);
++		kvm_release_page_clean(page);
++		nested_vmx_failInvalid(vcpu);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++	kunmap(page);
++	kvm_release_page_clean(page);
++
++	vmx->nested.vmxon_ptr = vmptr;
++	ret = enter_vmx_operation(vcpu);
++	if (ret)
++		return ret;
++
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++/*
++ * Intel's VMX Instruction Reference specifies a common set of prerequisites
++ * for running VMX instructions (except VMXON, whose prerequisites are
++ * slightly different). It also specifies what exception to inject otherwise.
++ * Note that many of these exceptions have priority over VM exits, so they
++ * don't have to be checked again here.
++ */
++static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
++{
++	if (!to_vmx(vcpu)->nested.vmxon) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 0;
++	}
++
++	if (vmx_get_cpl(vcpu)) {
++		kvm_inject_gp(vcpu, 0);
++		return 0;
++	}
++
++	return 1;
++}
++
++static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
++{
++	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
++	vmcs_write64(VMCS_LINK_POINTER, -1ull);
++	vmx->nested.sync_shadow_vmcs = false;
++}
++
++static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
++{
++	if (vmx->nested.current_vmptr == -1ull)
++		return;
++
++	if (enable_shadow_vmcs) {
++		/* copy to memory all shadowed fields in case
++		   they were modified */
++		copy_shadow_to_vmcs12(vmx);
++		vmx_disable_shadow_vmcs(vmx);
++	}
++	vmx->nested.posted_intr_nv = -1;
++
++	/* Flush VMCS12 to guest memory */
++	kvm_vcpu_write_guest_page(&vmx->vcpu,
++				  vmx->nested.current_vmptr >> PAGE_SHIFT,
++				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
++
++	vmx->nested.current_vmptr = -1ull;
++}
++
++/*
++ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
++ * just stops using VMX.
++ */
++static void free_nested(struct vcpu_vmx *vmx)
++{
++	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
++		return;
++
++	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, &vmx->vcpu);
++
++	hrtimer_cancel(&vmx->nested.preemption_timer);
++	vmx->nested.vmxon = false;
++	vmx->nested.smm.vmxon = false;
++	free_vpid(vmx->nested.vpid02);
++	vmx->nested.posted_intr_nv = -1;
++	vmx->nested.current_vmptr = -1ull;
++	if (enable_shadow_vmcs) {
++		vmx_disable_shadow_vmcs(vmx);
++		vmcs_clear(vmx->vmcs01.shadow_vmcs);
++		free_vmcs(vmx->vmcs01.shadow_vmcs);
++		vmx->vmcs01.shadow_vmcs = NULL;
++	}
++	kfree(vmx->nested.cached_vmcs12);
++	kfree(vmx->nested.cached_shadow_vmcs12);
++	/* Unpin physical memory we referred to in the vmcs02 */
++	if (vmx->nested.apic_access_page) {
++		kvm_release_page_dirty(vmx->nested.apic_access_page);
++		vmx->nested.apic_access_page = NULL;
++	}
++	if (vmx->nested.virtual_apic_page) {
++		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
++		vmx->nested.virtual_apic_page = NULL;
++	}
++	if (vmx->nested.pi_desc_page) {
++		kunmap(vmx->nested.pi_desc_page);
++		kvm_release_page_dirty(vmx->nested.pi_desc_page);
++		vmx->nested.pi_desc_page = NULL;
++		vmx->nested.pi_desc = NULL;
++	}
++
++	free_loaded_vmcs(&vmx->nested.vmcs02);
++}
++
++/* Emulate the VMXOFF instruction */
++static int handle_vmoff(struct kvm_vcpu *vcpu)
++{
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++	free_nested(to_vmx(vcpu));
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++/* Emulate the VMCLEAR instruction */
++static int handle_vmclear(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 zero = 0;
++	gpa_t vmptr;
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	if (nested_vmx_get_vmptr(vcpu, &vmptr))
++		return 1;
++
++	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
++		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	if (vmptr == vmx->nested.vmxon_ptr) {
++		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	if (vmptr == vmx->nested.current_vmptr)
++		nested_release_vmcs12(vmx);
++
++	kvm_vcpu_write_guest(vcpu,
++			vmptr + offsetof(struct vmcs12, launch_state),
++			&zero, sizeof(zero));
++
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
++
++/* Emulate the VMLAUNCH instruction */
++static int handle_vmlaunch(struct kvm_vcpu *vcpu)
++{
++	return nested_vmx_run(vcpu, true);
++}
++
++/* Emulate the VMRESUME instruction */
++static int handle_vmresume(struct kvm_vcpu *vcpu)
++{
++
++	return nested_vmx_run(vcpu, false);
++}
++
++/*
++ * Read a vmcs12 field. Since these can have varying lengths and we return
++ * one type, we chose the biggest type (u64) and zero-extend the return value
++ * to that size. Note that the caller, handle_vmread, might need to use only
++ * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
++ * 64-bit fields are to be returned).
++ */
++static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
++				  unsigned long field, u64 *ret)
++{
++	short offset = vmcs_field_to_offset(field);
++	char *p;
++
++	if (offset < 0)
++		return offset;
++
++	p = (char *)vmcs12 + offset;
++
++	switch (vmcs_field_width(field)) {
++	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
++		*ret = *((natural_width *)p);
++		return 0;
++	case VMCS_FIELD_WIDTH_U16:
++		*ret = *((u16 *)p);
++		return 0;
++	case VMCS_FIELD_WIDTH_U32:
++		*ret = *((u32 *)p);
++		return 0;
++	case VMCS_FIELD_WIDTH_U64:
++		*ret = *((u64 *)p);
++		return 0;
++	default:
++		WARN_ON(1);
++		return -ENOENT;
++	}
++}
++
++
++static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
++				   unsigned long field, u64 field_value){
++	short offset = vmcs_field_to_offset(field);
++	char *p = (char *)vmcs12 + offset;
++	if (offset < 0)
++		return offset;
++
++	switch (vmcs_field_width(field)) {
++	case VMCS_FIELD_WIDTH_U16:
++		*(u16 *)p = field_value;
++		return 0;
++	case VMCS_FIELD_WIDTH_U32:
++		*(u32 *)p = field_value;
++		return 0;
++	case VMCS_FIELD_WIDTH_U64:
++		*(u64 *)p = field_value;
++		return 0;
++	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
++		*(natural_width *)p = field_value;
++		return 0;
++	default:
++		WARN_ON(1);
++		return -ENOENT;
++	}
++
++}
++
++/*
++ * Copy the writable VMCS shadow fields back to the VMCS12, in case
++ * they have been modified by the L1 guest. Note that the "read-only"
++ * VM-exit information fields are actually writable if the vCPU is
++ * configured to support "VMWRITE to any supported field in the VMCS."
++ */
++static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
++{
++	const u16 *fields[] = {
++		shadow_read_write_fields,
++		shadow_read_only_fields
++	};
++	const int max_fields[] = {
++		max_shadow_read_write_fields,
++		max_shadow_read_only_fields
++	};
++	int i, q;
++	unsigned long field;
++	u64 field_value;
++	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
++
++	if (WARN_ON(!shadow_vmcs))
++		return;
++
++	preempt_disable();
++
++	vmcs_load(shadow_vmcs);
++
++	for (q = 0; q < ARRAY_SIZE(fields); q++) {
++		for (i = 0; i < max_fields[q]; i++) {
++			field = fields[q][i];
++			field_value = __vmcs_readl(field);
++			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
++		}
++		/*
++		 * Skip the VM-exit information fields if they are read-only.
++		 */
++		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
++			break;
++	}
++
++	vmcs_clear(shadow_vmcs);
++	vmcs_load(vmx->loaded_vmcs->vmcs);
++
++	preempt_enable();
++}
++
++static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
++{
++	const u16 *fields[] = {
++		shadow_read_write_fields,
++		shadow_read_only_fields
++	};
++	const int max_fields[] = {
++		max_shadow_read_write_fields,
++		max_shadow_read_only_fields
++	};
++	int i, q;
++	unsigned long field;
++	u64 field_value = 0;
++	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
++
++	if (WARN_ON(!shadow_vmcs))
++		return;
++
++	vmcs_load(shadow_vmcs);
++
++	for (q = 0; q < ARRAY_SIZE(fields); q++) {
++		for (i = 0; i < max_fields[q]; i++) {
++			field = fields[q][i];
++			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
++			__vmcs_writel(field, field_value);
++		}
++	}
++
++	vmcs_clear(shadow_vmcs);
++	vmcs_load(vmx->loaded_vmcs->vmcs);
++}
++
++/*
++ * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
++ * used before) all generate the same failure when it is missing.
++ */
++static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	if (vmx->nested.current_vmptr == -1ull) {
++		nested_vmx_failInvalid(vcpu);
++		return 0;
++	}
++	return 1;
++}
++
++static int handle_vmread(struct kvm_vcpu *vcpu)
++{
++	unsigned long field;
++	u64 field_value;
++	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++	gva_t gva = 0;
++	struct vmcs12 *vmcs12;
++	struct x86_exception e;
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	if (!nested_vmx_check_vmcs12(vcpu))
++		return kvm_skip_emulated_instruction(vcpu);
++
++	if (!is_guest_mode(vcpu))
++		vmcs12 = get_vmcs12(vcpu);
++	else {
++		/*
++		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
++		 * to shadowed-field sets the ALU flags for VMfailInvalid.
++		 */
++		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
++			nested_vmx_failInvalid(vcpu);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++		vmcs12 = get_shadow_vmcs12(vcpu);
++	}
++
++	/* Decode instruction info and find the field to read */
++	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
++	/* Read the field, zero-extended to a u64 field_value */
++	if (vmcs12_read_any(vmcs12, field, &field_value) < 0) {
++		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++	/*
++	 * Now copy part of this value to register or memory, as requested.
++	 * Note that the number of bits actually copied is 32 or 64 depending
++	 * on the guest's mode (32 or 64 bit), not on the given field's length.
++	 */
++	if (vmx_instruction_info & (1u << 10)) {
++		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
++			field_value);
++	} else {
++		if (get_vmx_mem_address(vcpu, exit_qualification,
++				vmx_instruction_info, true, &gva))
++			return 1;
++		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
++		if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
++						(is_long_mode(vcpu) ? 8 : 4),
++						&e)) {
++			kvm_inject_page_fault(vcpu, &e);
++			return 1;
++		}
++	}
++
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++
++static int handle_vmwrite(struct kvm_vcpu *vcpu)
++{
++	unsigned long field;
++	gva_t gva;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++
++	/* The value to write might be 32 or 64 bits, depending on L1's long
++	 * mode, and eventually we need to write that into a field of several
++	 * possible lengths. The code below first zero-extends the value to 64
++	 * bit (field_value), and then copies only the appropriate number of
++	 * bits into the vmcs12 field.
++	 */
++	u64 field_value = 0;
++	struct x86_exception e;
++	struct vmcs12 *vmcs12;
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	if (!nested_vmx_check_vmcs12(vcpu))
++		return kvm_skip_emulated_instruction(vcpu);
++
++	if (vmx_instruction_info & (1u << 10))
++		field_value = kvm_register_readl(vcpu,
++			(((vmx_instruction_info) >> 3) & 0xf));
++	else {
++		if (get_vmx_mem_address(vcpu, exit_qualification,
++				vmx_instruction_info, false, &gva))
++			return 1;
++		if (kvm_read_guest_virt(vcpu, gva, &field_value,
++					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
++			kvm_inject_page_fault(vcpu, &e);
++			return 1;
++		}
++	}
++
++
++	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
++	/*
++	 * If the vCPU supports "VMWRITE to any supported field in the
++	 * VMCS," then the "read-only" fields are actually read/write.
++	 */
++	if (vmcs_field_readonly(field) &&
++	    !nested_cpu_has_vmwrite_any_field(vcpu)) {
++		nested_vmx_failValid(vcpu,
++			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	if (!is_guest_mode(vcpu))
++		vmcs12 = get_vmcs12(vcpu);
++	else {
++		/*
++		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
++		 * to shadowed-field sets the ALU flags for VMfailInvalid.
++		 */
++		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
++			nested_vmx_failInvalid(vcpu);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++		vmcs12 = get_shadow_vmcs12(vcpu);
++
++	}
++
++	if (vmcs12_write_any(vmcs12, field, field_value) < 0) {
++		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	/*
++	 * Do not track vmcs12 dirty-state if in guest-mode
++	 * as we actually dirty shadow vmcs12 instead of vmcs12.
++	 */
++	if (!is_guest_mode(vcpu)) {
++		switch (field) {
++#define SHADOW_FIELD_RW(x) case x:
++#include "vmx_shadow_fields.h"
++			/*
++			 * The fields that can be updated by L1 without a vmexit are
++			 * always updated in the vmcs02, the others go down the slow
++			 * path of prepare_vmcs02.
++			 */
++			break;
++		default:
++			vmx->nested.dirty_vmcs12 = true;
++			break;
++		}
++	}
++
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
++{
++	vmx->nested.current_vmptr = vmptr;
++	if (enable_shadow_vmcs) {
++		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
++			      SECONDARY_EXEC_SHADOW_VMCS);
++		vmcs_write64(VMCS_LINK_POINTER,
++			     __pa(vmx->vmcs01.shadow_vmcs));
++		vmx->nested.sync_shadow_vmcs = true;
++	}
++	vmx->nested.dirty_vmcs12 = true;
++}
++
++/* Emulate the VMPTRLD instruction */
++static int handle_vmptrld(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	gpa_t vmptr;
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	if (nested_vmx_get_vmptr(vcpu, &vmptr))
++		return 1;
++
++	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
++		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	if (vmptr == vmx->nested.vmxon_ptr) {
++		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	if (vmx->nested.current_vmptr != vmptr) {
++		struct vmcs12 *new_vmcs12;
++		struct page *page;
++		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
++		if (is_error_page(page)) {
++			nested_vmx_failInvalid(vcpu);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++		new_vmcs12 = kmap(page);
++		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
++		    (new_vmcs12->hdr.shadow_vmcs &&
++		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
++			kunmap(page);
++			kvm_release_page_clean(page);
++			nested_vmx_failValid(vcpu,
++				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++
++		nested_release_vmcs12(vmx);
++		/*
++		 * Load VMCS12 from guest memory since it is not already
++		 * cached.
++		 */
++		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
++		kunmap(page);
++		kvm_release_page_clean(page);
++
++		set_current_vmptr(vmx, vmptr);
++	}
++
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++/* Emulate the VMPTRST instruction */
++static int handle_vmptrst(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
++	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
++	struct x86_exception e;
++	gva_t gva;
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
++		return 1;
++	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
++	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
++					sizeof(gpa_t), &e)) {
++		kvm_inject_page_fault(vcpu, &e);
++		return 1;
++	}
++	nested_vmx_succeed(vcpu);
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++/* Emulate the INVEPT instruction */
++static int handle_invept(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 vmx_instruction_info, types;
++	unsigned long type;
++	gva_t gva;
++	struct x86_exception e;
++	struct {
++		u64 eptp, gpa;
++	} operand;
++
++	if (!(vmx->nested.msrs.secondary_ctls_high &
++	      SECONDARY_EXEC_ENABLE_EPT) ||
++	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
++
++	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
++
++	if (type >= 32 || !(types & (1 << type))) {
++		nested_vmx_failValid(vcpu,
++				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	/* According to the Intel VMX instruction reference, the memory
++	 * operand is read even if it isn't needed (e.g., for type==global)
++	 */
++	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
++			vmx_instruction_info, false, &gva))
++		return 1;
++	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
++		kvm_inject_page_fault(vcpu, &e);
++		return 1;
++	}
++
++	switch (type) {
++	case VMX_EPT_EXTENT_GLOBAL:
++	/*
++	 * TODO: track mappings and invalidate
++	 * single context requests appropriately
++	 */
++	case VMX_EPT_EXTENT_CONTEXT:
++		kvm_mmu_sync_roots(vcpu);
++		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++		nested_vmx_succeed(vcpu);
++		break;
++	default:
++		BUG_ON(1);
++		break;
++	}
++
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_invvpid(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 vmx_instruction_info;
++	unsigned long type, types;
++	gva_t gva;
++	struct x86_exception e;
++	struct {
++		u64 vpid;
++		u64 gla;
++	} operand;
++
++	if (!(vmx->nested.msrs.secondary_ctls_high &
++	      SECONDARY_EXEC_ENABLE_VPID) ||
++			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
++
++	types = (vmx->nested.msrs.vpid_caps &
++			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
++
++	if (type >= 32 || !(types & (1 << type))) {
++		nested_vmx_failValid(vcpu,
++			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	/* according to the intel vmx instruction reference, the memory
++	 * operand is read even if it isn't needed (e.g., for type==global)
++	 */
++	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
++			vmx_instruction_info, false, &gva))
++		return 1;
++	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
++		kvm_inject_page_fault(vcpu, &e);
++		return 1;
++	}
++	if (operand.vpid >> 16) {
++		nested_vmx_failValid(vcpu,
++			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	switch (type) {
++	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
++		if (!operand.vpid ||
++		    is_noncanonical_address(operand.gla, vcpu)) {
++			nested_vmx_failValid(vcpu,
++				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++		if (cpu_has_vmx_invvpid_individual_addr() &&
++		    vmx->nested.vpid02) {
++			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
++				vmx->nested.vpid02, operand.gla);
++		} else
++			__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
++		break;
++	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
++	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
++		if (!operand.vpid) {
++			nested_vmx_failValid(vcpu,
++				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
++			return kvm_skip_emulated_instruction(vcpu);
++		}
++		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
++		break;
++	case VMX_VPID_EXTENT_ALL_CONTEXT:
++		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
++		break;
++	default:
++		WARN_ON_ONCE(1);
++		return kvm_skip_emulated_instruction(vcpu);
++	}
++
++	nested_vmx_succeed(vcpu);
++
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_invpcid(struct kvm_vcpu *vcpu)
++{
++	u32 vmx_instruction_info;
++	unsigned long type;
++	bool pcid_enabled;
++	gva_t gva;
++	struct x86_exception e;
++	unsigned i;
++	unsigned long roots_to_free = 0;
++	struct {
++		u64 pcid;
++		u64 gla;
++	} operand;
++
++	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++
++	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
++
++	if (type > 3) {
++		kvm_inject_gp(vcpu, 0);
++		return 1;
++	}
++
++	/* According to the Intel instruction reference, the memory operand
++	 * is read even if it isn't needed (e.g., for type==all)
++	 */
++	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
++				vmx_instruction_info, false, &gva))
++		return 1;
++
++	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
++		kvm_inject_page_fault(vcpu, &e);
++		return 1;
++	}
++
++	if (operand.pcid >> 12 != 0) {
++		kvm_inject_gp(vcpu, 0);
++		return 1;
++	}
++
++	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
++
++	switch (type) {
++	case INVPCID_TYPE_INDIV_ADDR:
++		if ((!pcid_enabled && (operand.pcid != 0)) ||
++		    is_noncanonical_address(operand.gla, vcpu)) {
++			kvm_inject_gp(vcpu, 0);
++			return 1;
++		}
++		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
++		return kvm_skip_emulated_instruction(vcpu);
++
++	case INVPCID_TYPE_SINGLE_CTXT:
++		if (!pcid_enabled && (operand.pcid != 0)) {
++			kvm_inject_gp(vcpu, 0);
++			return 1;
++		}
++
++		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
++			kvm_mmu_sync_roots(vcpu);
++			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++		}
++
++		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
++			if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3)
++			    == operand.pcid)
++				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
++
++		kvm_mmu_free_roots(vcpu, roots_to_free);
++		/*
++		 * If neither the current cr3 nor any of the prev_roots use the
++		 * given PCID, then nothing needs to be done here because a
++		 * resync will happen anyway before switching to any other CR3.
++		 */
++
++		return kvm_skip_emulated_instruction(vcpu);
++
++	case INVPCID_TYPE_ALL_NON_GLOBAL:
++		/*
++		 * Currently, KVM doesn't mark global entries in the shadow
++		 * page tables, so a non-global flush just degenerates to a
++		 * global flush. If needed, we could optimize this later by
++		 * keeping track of global entries in shadow page tables.
++		 */
++
++		/* fall-through */
++	case INVPCID_TYPE_ALL_INCL_GLOBAL:
++		kvm_mmu_unload(vcpu);
++		return kvm_skip_emulated_instruction(vcpu);
++
++	default:
++		BUG(); /* We have already checked above that type <= 3 */
++	}
++}
++
++static int handle_pml_full(struct kvm_vcpu *vcpu)
++{
++	unsigned long exit_qualification;
++
++	trace_kvm_pml_full(vcpu->vcpu_id);
++
++	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++	/*
++	 * PML buffer FULL happened while executing iret from NMI,
++	 * "blocked by NMI" bit has to be set before next VM entry.
++	 */
++	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
++			enable_vnmi &&
++			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
++		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
++				GUEST_INTR_STATE_NMI);
++
++	/*
++	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
++	 * here.., and there's no userspace involvement needed for PML.
++	 */
++	return 1;
++}
++
++static int handle_preemption_timer(struct kvm_vcpu *vcpu)
++{
++	if (!to_vmx(vcpu)->req_immediate_exit)
++		kvm_lapic_expired_hv_timer(vcpu);
++	return 1;
++}
++
++static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int maxphyaddr = cpuid_maxphyaddr(vcpu);
++
++	/* Check for memory type validity */
++	switch (address & VMX_EPTP_MT_MASK) {
++	case VMX_EPTP_MT_UC:
++		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
++			return false;
++		break;
++	case VMX_EPTP_MT_WB:
++		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
++			return false;
++		break;
++	default:
++		return false;
++	}
++
++	/* only 4 levels page-walk length are valid */
++	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
++		return false;
++
++	/* Reserved bits should not be set */
++	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
++		return false;
++
++	/* AD, if set, should be supported */
++	if (address & VMX_EPTP_AD_ENABLE_BIT) {
++		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
++			return false;
++	}
++
++	return true;
++}
++
++static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
++				     struct vmcs12 *vmcs12)
++{
++	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
++	u64 address;
++	bool accessed_dirty;
++	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
++
++	if (!nested_cpu_has_eptp_switching(vmcs12) ||
++	    !nested_cpu_has_ept(vmcs12))
++		return 1;
++
++	if (index >= VMFUNC_EPTP_ENTRIES)
++		return 1;
++
++
++	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
++				     &address, index * 8, 8))
++		return 1;
++
++	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
++
++	/*
++	 * If the (L2) guest does a vmfunc to the currently
++	 * active ept pointer, we don't have to do anything else
++	 */
++	if (vmcs12->ept_pointer != address) {
++		if (!valid_ept_address(vcpu, address))
++			return 1;
++
++		kvm_mmu_unload(vcpu);
++		mmu->ept_ad = accessed_dirty;
++		mmu->base_role.ad_disabled = !accessed_dirty;
++		vmcs12->ept_pointer = address;
++		/*
++		 * TODO: Check what's the correct approach in case
++		 * mmu reload fails. Currently, we just let the next
++		 * reload potentially fail
++		 */
++		kvm_mmu_reload(vcpu);
++	}
++
++	return 0;
++}
++
++static int handle_vmfunc(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmcs12 *vmcs12;
++	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
++
++	/*
++	 * VMFUNC is only supported for nested guests, but we always enable the
++	 * secondary control for simplicity; for non-nested mode, fake that we
++	 * didn't by injecting #UD.
++	 */
++	if (!is_guest_mode(vcpu)) {
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++
++	vmcs12 = get_vmcs12(vcpu);
++	if ((vmcs12->vm_function_control & (1 << function)) == 0)
++		goto fail;
++
++	switch (function) {
++	case 0:
++		if (nested_vmx_eptp_switching(vcpu, vmcs12))
++			goto fail;
++		break;
++	default:
++		goto fail;
++	}
++	return kvm_skip_emulated_instruction(vcpu);
++
++fail:
++	nested_vmx_vmexit(vcpu, vmx->exit_reason,
++			  vmcs_read32(VM_EXIT_INTR_INFO),
++			  vmcs_readl(EXIT_QUALIFICATION));
++	return 1;
++}
++
++static int handle_encls(struct kvm_vcpu *vcpu)
++{
++	/*
++	 * SGX virtualization is not yet supported.  There is no software
++	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
++	 * to prevent the guest from executing ENCLS.
++	 */
++	kvm_queue_exception(vcpu, UD_VECTOR);
++	return 1;
++}
++
++/*
++ * The exit handlers return 1 if the exit was handled fully and guest execution
++ * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
++ * to be done to userspace and return 0.
++ */
++static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
++	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
++	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
++	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
++	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
++	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
++	[EXIT_REASON_CR_ACCESS]               = handle_cr,
++	[EXIT_REASON_DR_ACCESS]               = handle_dr,
++	[EXIT_REASON_CPUID]                   = handle_cpuid,
++	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
++	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
++	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
++	[EXIT_REASON_HLT]                     = handle_halt,
++	[EXIT_REASON_INVD]		      = handle_invd,
++	[EXIT_REASON_INVLPG]		      = handle_invlpg,
++	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
++	[EXIT_REASON_VMCALL]                  = handle_vmcall,
++	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
++	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
++	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
++	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
++	[EXIT_REASON_VMREAD]                  = handle_vmread,
++	[EXIT_REASON_VMRESUME]                = handle_vmresume,
++	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
++	[EXIT_REASON_VMOFF]                   = handle_vmoff,
++	[EXIT_REASON_VMON]                    = handle_vmon,
++	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
++	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
++	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
++	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
++	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
++	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
++	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
++	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
++	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
++	[EXIT_REASON_LDTR_TR]		      = handle_desc,
++	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
++	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
++	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
++	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
++	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
++	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
++	[EXIT_REASON_INVEPT]                  = handle_invept,
++	[EXIT_REASON_INVVPID]                 = handle_invvpid,
++	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
++	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
++	[EXIT_REASON_XSAVES]                  = handle_xsaves,
++	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
++	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
++	[EXIT_REASON_INVPCID]                 = handle_invpcid,
++	[EXIT_REASON_VMFUNC]                  = handle_vmfunc,
++	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
++	[EXIT_REASON_ENCLS]		      = handle_encls,
++};
++
++static const int kvm_vmx_max_exit_handlers =
++	ARRAY_SIZE(kvm_vmx_exit_handlers);
++
++/*
++ * Return true if an IO instruction with the specified port and size should cause
++ * a VM-exit into L1.
++ */
++bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
++				 int size)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	gpa_t bitmap, last_bitmap;
++	u8 b;
++
++	last_bitmap = (gpa_t)-1;
++	b = -1;
++
++	while (size > 0) {
++		if (port < 0x8000)
++			bitmap = vmcs12->io_bitmap_a;
++		else if (port < 0x10000)
++			bitmap = vmcs12->io_bitmap_b;
++		else
++			return true;
++		bitmap += (port & 0x7fff) / 8;
++
++		if (last_bitmap != bitmap)
++			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
++				return true;
++		if (b & (1 << (port & 7)))
++			return true;
++
++		port++;
++		size--;
++		last_bitmap = bitmap;
++	}
++
++	return false;
++}
++
++/*
++ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
++ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
++ * disinterest in the current event (read or write a specific MSR) by using an
++ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
++ */
++static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
++	struct vmcs12 *vmcs12, u32 exit_reason)
++{
++	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
++	gpa_t bitmap;
++
++	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
++		return true;
++
++	/*
++	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
++	 * for the four combinations of read/write and low/high MSR numbers.
++	 * First we need to figure out which of the four to use:
++	 */
++	bitmap = vmcs12->msr_bitmap;
++	if (exit_reason == EXIT_REASON_MSR_WRITE)
++		bitmap += 2048;
++	if (msr_index >= 0xc0000000) {
++		msr_index -= 0xc0000000;
++		bitmap += 1024;
++	}
++
++	/* Then read the msr_index'th bit from this bitmap: */
++	if (msr_index < 1024*8) {
++		unsigned char b;
++		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
++			return true;
++		return 1 & (b >> (msr_index & 7));
++	} else
++		return true; /* let L1 handle the wrong parameter */
++}
++
++/*
++ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
++ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
++ * intercept (via guest_host_mask etc.) the current event.
++ */
++static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
++	struct vmcs12 *vmcs12)
++{
++	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++	int cr = exit_qualification & 15;
++	int reg;
++	unsigned long val;
++
++	switch ((exit_qualification >> 4) & 3) {
++	case 0: /* mov to cr */
++		reg = (exit_qualification >> 8) & 15;
++		val = kvm_register_readl(vcpu, reg);
++		switch (cr) {
++		case 0:
++			if (vmcs12->cr0_guest_host_mask &
++			    (val ^ vmcs12->cr0_read_shadow))
++				return true;
++			break;
++		case 3:
++			if ((vmcs12->cr3_target_count >= 1 &&
++					vmcs12->cr3_target_value0 == val) ||
++				(vmcs12->cr3_target_count >= 2 &&
++					vmcs12->cr3_target_value1 == val) ||
++				(vmcs12->cr3_target_count >= 3 &&
++					vmcs12->cr3_target_value2 == val) ||
++				(vmcs12->cr3_target_count >= 4 &&
++					vmcs12->cr3_target_value3 == val))
++				return false;
++			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
++				return true;
++			break;
++		case 4:
++			if (vmcs12->cr4_guest_host_mask &
++			    (vmcs12->cr4_read_shadow ^ val))
++				return true;
++			break;
++		case 8:
++			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
++				return true;
++			break;
++		}
++		break;
++	case 2: /* clts */
++		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
++		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
++			return true;
++		break;
++	case 1: /* mov from cr */
++		switch (cr) {
++		case 3:
++			if (vmcs12->cpu_based_vm_exec_control &
++			    CPU_BASED_CR3_STORE_EXITING)
++				return true;
++			break;
++		case 8:
++			if (vmcs12->cpu_based_vm_exec_control &
++			    CPU_BASED_CR8_STORE_EXITING)
++				return true;
++			break;
++		}
++		break;
++	case 3: /* lmsw */
++		/*
++		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
++		 * cr0. Other attempted changes are ignored, with no exit.
++		 */
++		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
++		if (vmcs12->cr0_guest_host_mask & 0xe &
++		    (val ^ vmcs12->cr0_read_shadow))
++			return true;
++		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
++		    !(vmcs12->cr0_read_shadow & 0x1) &&
++		    (val & 0x1))
++			return true;
++		break;
++	}
++	return false;
++}
++
++static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
++	struct vmcs12 *vmcs12, gpa_t bitmap)
++{
++	u32 vmx_instruction_info;
++	unsigned long field;
++	u8 b;
++
++	if (!nested_cpu_has_shadow_vmcs(vmcs12))
++		return true;
++
++	/* Decode instruction info and find the field to access */
++	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
++
++	/* Out-of-range fields always cause a VM exit from L2 to L1 */
++	if (field >> 15)
++		return true;
++
++	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
++		return true;
++
++	return 1 & (b >> (field & 7));
++}
++
++/*
++ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
++ * should handle it ourselves in L0 (and then continue L2). Only call this
++ * when in is_guest_mode (L2).
++ */
++static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
++{
++	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++	if (vmx->nested.nested_run_pending)
++		return false;
++
++	if (unlikely(vmx->fail)) {
++		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
++				    vmcs_read32(VM_INSTRUCTION_ERROR));
++		return true;
++	}
++
++	/*
++	 * The host physical addresses of some pages of guest memory
++	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
++	 * Page). The CPU may write to these pages via their host
++	 * physical address while L2 is running, bypassing any
++	 * address-translation-based dirty tracking (e.g. EPT write
++	 * protection).
++	 *
++	 * Mark them dirty on every exit from L2 to prevent them from
++	 * getting out of sync with dirty tracking.
++	 */
++	nested_mark_vmcs12_pages_dirty(vcpu);
++
++	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
++				vmcs_readl(EXIT_QUALIFICATION),
++				vmx->idt_vectoring_info,
++				intr_info,
++				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
++				KVM_ISA_VMX);
++
++	switch ((u16)exit_reason) {
++	case EXIT_REASON_EXCEPTION_NMI:
++		if (is_nmi(intr_info))
++			return false;
++		else if (is_page_fault(intr_info))
++			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
++		else if (is_no_device(intr_info) &&
++			 !(vmcs12->guest_cr0 & X86_CR0_TS))
++			return false;
++		else if (is_debug(intr_info) &&
++			 vcpu->guest_debug &
++			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
++			return false;
++		else if (is_breakpoint(intr_info) &&
++			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
++			return false;
++		return vmcs12->exception_bitmap &
++				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
++	case EXIT_REASON_EXTERNAL_INTERRUPT:
++		return false;
++	case EXIT_REASON_TRIPLE_FAULT:
++		return true;
++	case EXIT_REASON_PENDING_INTERRUPT:
++		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
++	case EXIT_REASON_NMI_WINDOW:
++		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
++	case EXIT_REASON_TASK_SWITCH:
++		return true;
++	case EXIT_REASON_CPUID:
++		return true;
++	case EXIT_REASON_HLT:
++		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
++	case EXIT_REASON_INVD:
++		return true;
++	case EXIT_REASON_INVLPG:
++		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
++	case EXIT_REASON_RDPMC:
++		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
++	case EXIT_REASON_RDRAND:
++		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
++	case EXIT_REASON_RDSEED:
++		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
++	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
++		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
++	case EXIT_REASON_VMREAD:
++		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
++			vmcs12->vmread_bitmap);
++	case EXIT_REASON_VMWRITE:
++		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
++			vmcs12->vmwrite_bitmap);
++	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
++	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
++	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
++	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
++	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
++		/*
++		 * VMX instructions trap unconditionally. This allows L1 to
++		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
++		 */
++		return true;
++	case EXIT_REASON_CR_ACCESS:
++		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
++	case EXIT_REASON_DR_ACCESS:
++		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
++	case EXIT_REASON_IO_INSTRUCTION:
++		return nested_vmx_exit_handled_io(vcpu, vmcs12);
++	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
++		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
++	case EXIT_REASON_MSR_READ:
++	case EXIT_REASON_MSR_WRITE:
++		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
++	case EXIT_REASON_INVALID_STATE:
++		return true;
++	case EXIT_REASON_MWAIT_INSTRUCTION:
++		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
++	case EXIT_REASON_MONITOR_TRAP_FLAG:
++		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
++	case EXIT_REASON_MONITOR_INSTRUCTION:
++		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
++	case EXIT_REASON_PAUSE_INSTRUCTION:
++		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
++			nested_cpu_has2(vmcs12,
++				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
++	case EXIT_REASON_MCE_DURING_VMENTRY:
++		return false;
++	case EXIT_REASON_TPR_BELOW_THRESHOLD:
++		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
++	case EXIT_REASON_APIC_ACCESS:
++	case EXIT_REASON_APIC_WRITE:
++	case EXIT_REASON_EOI_INDUCED:
++		/*
++		 * The controls for "virtualize APIC accesses," "APIC-
++		 * register virtualization," and "virtual-interrupt
++		 * delivery" only come from vmcs12.
++		 */
++		return true;
++	case EXIT_REASON_EPT_VIOLATION:
++		/*
++		 * L0 always deals with the EPT violation. If nested EPT is
++		 * used, and the nested mmu code discovers that the address is
++		 * missing in the guest EPT table (EPT12), the EPT violation
++		 * will be injected with nested_ept_inject_page_fault()
++		 */
++		return false;
++	case EXIT_REASON_EPT_MISCONFIG:
++		/*
++		 * L2 never uses directly L1's EPT, but rather L0's own EPT
++		 * table (shadow on EPT) or a merged EPT table that L0 built
++		 * (EPT on EPT). So any problems with the structure of the
++		 * table is L0's fault.
++		 */
++		return false;
++	case EXIT_REASON_INVPCID:
++		return
++			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
++			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
++	case EXIT_REASON_WBINVD:
++		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
++	case EXIT_REASON_XSETBV:
++		return true;
++	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
++		/*
++		 * This should never happen, since it is not possible to
++		 * set XSS to a non-zero value---neither in L1 nor in L2.
++		 * If if it were, XSS would have to be checked against
++		 * the XSS exit bitmap in vmcs12.
++		 */
++		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
++	case EXIT_REASON_PREEMPTION_TIMER:
++		return false;
++	case EXIT_REASON_PML_FULL:
++		/* We emulate PML support to L1. */
++		return false;
++	case EXIT_REASON_VMFUNC:
++		/* VM functions are emulated through L2->L0 vmexits. */
++		return false;
++	case EXIT_REASON_ENCLS:
++		/* SGX is never exposed to L1 */
++		return false;
++	default:
++		return true;
++	}
++}
++
++static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
++{
++	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++
++	/*
++	 * At this point, the exit interruption info in exit_intr_info
++	 * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
++	 * we need to query the in-kernel LAPIC.
++	 */
++	WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
++	if ((exit_intr_info &
++	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
++	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
++		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++		vmcs12->vm_exit_intr_error_code =
++			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
++	}
++
++	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
++			  vmcs_readl(EXIT_QUALIFICATION));
++	return 1;
++}
++
++static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
++{
++	*info1 = vmcs_readl(EXIT_QUALIFICATION);
++	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
++}
++
++static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
++{
++	if (vmx->pml_pg) {
++		__free_page(vmx->pml_pg);
++		vmx->pml_pg = NULL;
++	}
++}
++
++static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u64 *pml_buf;
++	u16 pml_idx;
++
++	pml_idx = vmcs_read16(GUEST_PML_INDEX);
++
++	/* Do nothing if PML buffer is empty */
++	if (pml_idx == (PML_ENTITY_NUM - 1))
++		return;
++
++	/* PML index always points to next available PML buffer entity */
++	if (pml_idx >= PML_ENTITY_NUM)
++		pml_idx = 0;
++	else
++		pml_idx++;
++
++	pml_buf = page_address(vmx->pml_pg);
++	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
++		u64 gpa;
++
++		gpa = pml_buf[pml_idx];
++		WARN_ON(gpa & (PAGE_SIZE - 1));
++		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
++	}
++
++	/* reset PML index */
++	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
++}
++
++/*
++ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
++ * Called before reporting dirty_bitmap to userspace.
++ */
++static void kvm_flush_pml_buffers(struct kvm *kvm)
++{
++	int i;
++	struct kvm_vcpu *vcpu;
++	/*
++	 * We only need to kick vcpu out of guest mode here, as PML buffer
++	 * is flushed at beginning of all VMEXITs, and it's obvious that only
++	 * vcpus running in guest are possible to have unflushed GPAs in PML
++	 * buffer.
++	 */
++	kvm_for_each_vcpu(i, vcpu, kvm)
++		kvm_vcpu_kick(vcpu);
++}
++
++static void vmx_dump_sel(char *name, uint32_t sel)
++{
++	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
++	       name, vmcs_read16(sel),
++	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
++	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
++	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
++}
++
++static void vmx_dump_dtsel(char *name, uint32_t limit)
++{
++	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
++	       name, vmcs_read32(limit),
++	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
++}
++
++static void dump_vmcs(void)
++{
++	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
++	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
++	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
++	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
++	u32 secondary_exec_control = 0;
++	unsigned long cr4 = vmcs_readl(GUEST_CR4);
++	u64 efer = vmcs_read64(GUEST_IA32_EFER);
++	int i, n;
++
++	if (cpu_has_secondary_exec_ctrls())
++		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
++
++	pr_err("*** Guest State ***\n");
++	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
++	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
++	       vmcs_readl(CR0_GUEST_HOST_MASK));
++	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
++	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
++	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
++	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
++	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
++	{
++		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
++		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
++		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
++		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
++	}
++	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
++	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
++	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
++	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
++	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
++	       vmcs_readl(GUEST_SYSENTER_ESP),
++	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
++	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
++	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
++	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
++	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
++	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
++	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
++	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
++	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
++	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
++	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
++	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
++	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
++		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
++		       efer, vmcs_read64(GUEST_IA32_PAT));
++	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
++	       vmcs_read64(GUEST_IA32_DEBUGCTL),
++	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
++	if (cpu_has_load_perf_global_ctrl &&
++	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
++		pr_err("PerfGlobCtl = 0x%016llx\n",
++		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
++	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
++		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
++	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
++	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
++	       vmcs_read32(GUEST_ACTIVITY_STATE));
++	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
++		pr_err("InterruptStatus = %04x\n",
++		       vmcs_read16(GUEST_INTR_STATUS));
++
++	pr_err("*** Host State ***\n");
++	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
++	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
++	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
++	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
++	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
++	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
++	       vmcs_read16(HOST_TR_SELECTOR));
++	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
++	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
++	       vmcs_readl(HOST_TR_BASE));
++	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
++	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
++	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
++	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
++	       vmcs_readl(HOST_CR4));
++	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
++	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
++	       vmcs_read32(HOST_IA32_SYSENTER_CS),
++	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
++	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
++		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
++		       vmcs_read64(HOST_IA32_EFER),
++		       vmcs_read64(HOST_IA32_PAT));
++	if (cpu_has_load_perf_global_ctrl &&
++	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
++		pr_err("PerfGlobCtl = 0x%016llx\n",
++		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
++
++	pr_err("*** Control State ***\n");
++	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
++	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
++	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
++	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
++	       vmcs_read32(EXCEPTION_BITMAP),
++	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
++	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
++	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
++	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
++	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
++	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
++	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
++	       vmcs_read32(VM_EXIT_INTR_INFO),
++	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
++	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
++	pr_err("        reason=%08x qualification=%016lx\n",
++	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
++	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
++	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
++	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
++	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
++	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
++		pr_err("TSC Multiplier = 0x%016llx\n",
++		       vmcs_read64(TSC_MULTIPLIER));
++	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
++		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
++	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
++		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
++	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
++		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
++	n = vmcs_read32(CR3_TARGET_COUNT);
++	for (i = 0; i + 1 < n; i += 4)
++		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
++		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
++		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
++	if (i < n)
++		pr_err("CR3 target%u=%016lx\n",
++		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
++	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
++		pr_err("PLE Gap=%08x Window=%08x\n",
++		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
++	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
++		pr_err("Virtual processor ID = 0x%04x\n",
++		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
++}
++
++/*
++ * The guest has exited.  See if we can fix it or if we need userspace
++ * assistance.
++ */
++static int vmx_handle_exit(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 exit_reason = vmx->exit_reason;
++	u32 vectoring_info = vmx->idt_vectoring_info;
++
++	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
++
++	/*
++	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
++	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
++	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
++	 * mode as if vcpus is in root mode, the PML buffer must has been
++	 * flushed already.
++	 */
++	if (enable_pml)
++		vmx_flush_pml_buffer(vcpu);
++
++	/* If guest state is invalid, start emulating */
++	if (vmx->emulation_required)
++		return handle_invalid_guest_state(vcpu);
++
++	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
++		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
++
++	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
++		dump_vmcs();
++		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
++		vcpu->run->fail_entry.hardware_entry_failure_reason
++			= exit_reason;
++		return 0;
++	}
++
++	if (unlikely(vmx->fail)) {
++		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
++		vcpu->run->fail_entry.hardware_entry_failure_reason
++			= vmcs_read32(VM_INSTRUCTION_ERROR);
++		return 0;
++	}
++
++	/*
++	 * Note:
++	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
++	 * delivery event since it indicates guest is accessing MMIO.
++	 * The vm-exit can be triggered again after return to guest that
++	 * will cause infinite loop.
++	 */
++	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
++			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
++			exit_reason != EXIT_REASON_EPT_VIOLATION &&
++			exit_reason != EXIT_REASON_PML_FULL &&
++			exit_reason != EXIT_REASON_APIC_ACCESS &&
++			exit_reason != EXIT_REASON_TASK_SWITCH)) {
++		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
++		vcpu->run->internal.ndata = 3;
++		vcpu->run->internal.data[0] = vectoring_info;
++		vcpu->run->internal.data[1] = exit_reason;
++		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
++		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
++			vcpu->run->internal.ndata++;
++			vcpu->run->internal.data[3] =
++				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
++		}
++		return 0;
++	}
++
++	if (unlikely(!enable_vnmi &&
++		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
++		if (vmx_interrupt_allowed(vcpu)) {
++			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
++		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
++			   vcpu->arch.nmi_pending) {
++			/*
++			 * This CPU don't support us in finding the end of an
++			 * NMI-blocked window if the guest runs with IRQs
++			 * disabled. So we pull the trigger after 1 s of
++			 * futile waiting, but inform the user about this.
++			 */
++			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
++			       "state on VCPU %d after 1 s timeout\n",
++			       __func__, vcpu->vcpu_id);
++			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
++		}
++	}
++
++	if (exit_reason < kvm_vmx_max_exit_handlers
++	    && kvm_vmx_exit_handlers[exit_reason])
++		return kvm_vmx_exit_handlers[exit_reason](vcpu);
++	else {
++		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
++				exit_reason);
++		kvm_queue_exception(vcpu, UD_VECTOR);
++		return 1;
++	}
++}
++
++/*
++ * Software based L1D cache flush which is used when microcode providing
++ * the cache control MSR is not loaded.
++ *
++ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
++ * flush it is required to read in 64 KiB because the replacement algorithm
++ * is not exactly LRU. This could be sized at runtime via topology
++ * information but as all relevant affected CPUs have 32KiB L1D cache size
++ * there is no point in doing so.
++ */
++static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
++{
++	int size = PAGE_SIZE << L1D_CACHE_ORDER;
++
++	/*
++	 * This code is only executed when the the flush mode is 'cond' or
++	 * 'always'
++	 */
++	if (static_branch_likely(&vmx_l1d_flush_cond)) {
++		bool flush_l1d;
++
++		/*
++		 * Clear the per-vcpu flush bit, it gets set again
++		 * either from vcpu_run() or from one of the unsafe
++		 * VMEXIT handlers.
++		 */
++		flush_l1d = vcpu->arch.l1tf_flush_l1d;
++		vcpu->arch.l1tf_flush_l1d = false;
++
++		/*
++		 * Clear the per-cpu flush bit, it gets set again from
++		 * the interrupt handlers.
++		 */
++		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
++		kvm_clear_cpu_l1tf_flush_l1d();
++
++		if (!flush_l1d)
++			return;
++	}
++
++	vcpu->stat.l1d_flush++;
++
++	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
++		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
++		return;
++	}
++
++	asm volatile(
++		/* First ensure the pages are in the TLB */
++		"xorl	%%eax, %%eax\n"
++		".Lpopulate_tlb:\n\t"
++		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
++		"addl	$4096, %%eax\n\t"
++		"cmpl	%%eax, %[size]\n\t"
++		"jne	.Lpopulate_tlb\n\t"
++		"xorl	%%eax, %%eax\n\t"
++		"cpuid\n\t"
++		/* Now fill the cache */
++		"xorl	%%eax, %%eax\n"
++		".Lfill_cache:\n"
++		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
++		"addl	$64, %%eax\n\t"
++		"cmpl	%%eax, %[size]\n\t"
++		"jne	.Lfill_cache\n\t"
++		"lfence\n"
++		:: [flush_pages] "r" (vmx_l1d_flush_pages),
++		    [size] "r" (size)
++		: "eax", "ebx", "ecx", "edx");
++}
++
++static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++	if (is_guest_mode(vcpu) &&
++		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
++		return;
++
++	if (irr == -1 || tpr < irr) {
++		vmcs_write32(TPR_THRESHOLD, 0);
++		return;
++	}
++
++	vmcs_write32(TPR_THRESHOLD, irr);
++}
++
++static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
++{
++	u32 sec_exec_control;
++
++	if (!lapic_in_kernel(vcpu))
++		return;
++
++	if (!flexpriority_enabled &&
++	    !cpu_has_vmx_virtualize_x2apic_mode())
++		return;
++
++	/* Postpone execution until vmcs01 is the current VMCS. */
++	if (is_guest_mode(vcpu)) {
++		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
++		return;
++	}
++
++	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
++	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
++
++	switch (kvm_get_apic_mode(vcpu)) {
++	case LAPIC_MODE_INVALID:
++		WARN_ONCE(true, "Invalid local APIC state");
++	case LAPIC_MODE_DISABLED:
++		break;
++	case LAPIC_MODE_XAPIC:
++		if (flexpriority_enabled) {
++			sec_exec_control |=
++				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++			vmx_flush_tlb(vcpu, true);
++		}
++		break;
++	case LAPIC_MODE_X2APIC:
++		if (cpu_has_vmx_virtualize_x2apic_mode())
++			sec_exec_control |=
++				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
++		break;
++	}
++	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
++
++	vmx_update_msr_bitmap(vcpu);
++}
++
++static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
++{
++	if (!is_guest_mode(vcpu)) {
++		vmcs_write64(APIC_ACCESS_ADDR, hpa);
++		vmx_flush_tlb(vcpu, true);
++	}
++}
++
++static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
++{
++	u16 status;
++	u8 old;
++
++	if (max_isr == -1)
++		max_isr = 0;
++
++	status = vmcs_read16(GUEST_INTR_STATUS);
++	old = status >> 8;
++	if (max_isr != old) {
++		status &= 0xff;
++		status |= max_isr << 8;
++		vmcs_write16(GUEST_INTR_STATUS, status);
++	}
++}
++
++static void vmx_set_rvi(int vector)
++{
++	u16 status;
++	u8 old;
++
++	if (vector == -1)
++		vector = 0;
++
++	status = vmcs_read16(GUEST_INTR_STATUS);
++	old = (u8)status & 0xff;
++	if ((u8)vector != old) {
++		status &= ~0xff;
++		status |= (u8)vector;
++		vmcs_write16(GUEST_INTR_STATUS, status);
++	}
++}
++
++static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
++{
++	/*
++	 * When running L2, updating RVI is only relevant when
++	 * vmcs12 virtual-interrupt-delivery enabled.
++	 * However, it can be enabled only when L1 also
++	 * intercepts external-interrupts and in that case
++	 * we should not update vmcs02 RVI but instead intercept
++	 * interrupt. Therefore, do nothing when running L2.
++	 */
++	if (!is_guest_mode(vcpu))
++		vmx_set_rvi(max_irr);
++}
++
++static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int max_irr;
++	bool max_irr_updated;
++
++	WARN_ON(!vcpu->arch.apicv_active);
++	if (pi_test_on(&vmx->pi_desc)) {
++		pi_clear_on(&vmx->pi_desc);
++		/*
++		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
++		 * But on x86 this is just a compiler barrier anyway.
++		 */
++		smp_mb__after_atomic();
++		max_irr_updated =
++			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
++
++		/*
++		 * If we are running L2 and L1 has a new pending interrupt
++		 * which can be injected, we should re-evaluate
++		 * what should be done with this new L1 interrupt.
++		 * If L1 intercepts external-interrupts, we should
++		 * exit from L2 to L1. Otherwise, interrupt should be
++		 * delivered directly to L2.
++		 */
++		if (is_guest_mode(vcpu) && max_irr_updated) {
++			if (nested_exit_on_intr(vcpu))
++				kvm_vcpu_exiting_guest_mode(vcpu);
++			else
++				kvm_make_request(KVM_REQ_EVENT, vcpu);
++		}
++	} else {
++		max_irr = kvm_lapic_find_highest_irr(vcpu);
++	}
++	vmx_hwapic_irr_update(vcpu, max_irr);
++	return max_irr;
++}
++
++static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
++{
++	u8 rvi = vmx_get_rvi();
++	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
++
++	return ((rvi & 0xf0) > (vppr & 0xf0));
++}
++
++static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
++{
++	return pi_test_on(vcpu_to_pi_desc(vcpu));
++}
++
++static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
++{
++	if (!kvm_vcpu_apicv_active(vcpu))
++		return;
++
++	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
++	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
++	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
++	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
++}
++
++static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	pi_clear_on(&vmx->pi_desc);
++	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
++}
++
++static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
++{
++	if (vmx->exit_reason != EXIT_REASON_EXCEPTION_NMI)
++		return;
++
++	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++
++	/* if exit due to PF check for async PF */
++	if (is_page_fault(vmx->exit_intr_info))
++		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
++
++	/* Handle machine checks before interrupts are enabled */
++	if (is_machine_check(vmx->exit_intr_info))
++		kvm_machine_check();
++
++	/* We need to handle NMIs before interrupts are enabled */
++	if (is_nmi(vmx->exit_intr_info)) {
++		kvm_before_interrupt(&vmx->vcpu);
++		asm("int $2");
++		kvm_after_interrupt(&vmx->vcpu);
++	}
++}
++
++static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
++{
++	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++
++	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
++			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
++		unsigned int vector;
++		unsigned long entry;
++		gate_desc *desc;
++		struct vcpu_vmx *vmx = to_vmx(vcpu);
++#ifdef CONFIG_X86_64
++		unsigned long tmp;
++#endif
++
++		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
++		desc = (gate_desc *)vmx->host_idt_base + vector;
++		entry = gate_offset(desc);
++		asm volatile(
++#ifdef CONFIG_X86_64
++			"mov %%" _ASM_SP ", %[sp]\n\t"
++			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
++			"push $%c[ss]\n\t"
++			"push %[sp]\n\t"
++#endif
++			"pushf\n\t"
++			__ASM_SIZE(push) " $%c[cs]\n\t"
++			CALL_NOSPEC
++			:
++#ifdef CONFIG_X86_64
++			[sp]"=&r"(tmp),
++#endif
++			ASM_CALL_CONSTRAINT
++			:
++			THUNK_TARGET(entry),
++			[ss]"i"(__KERNEL_DS),
++			[cs]"i"(__KERNEL_CS)
++			);
++	}
++}
++STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
++
++static bool vmx_has_emulated_msr(int index)
++{
++	switch (index) {
++	case MSR_IA32_SMBASE:
++		/*
++		 * We cannot do SMM unless we can run the guest in big
++		 * real mode.
++		 */
++		return enable_unrestricted_guest || emulate_invalid_guest_state;
++	case MSR_AMD64_VIRT_SPEC_CTRL:
++		/* This is AMD only.  */
++		return false;
++	default:
++		return true;
++	}
++}
++
++static bool vmx_mpx_supported(void)
++{
++	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
++		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
++}
++
++static bool vmx_xsaves_supported(void)
++{
++	return vmcs_config.cpu_based_2nd_exec_ctrl &
++		SECONDARY_EXEC_XSAVES;
++}
++
++static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
++{
++	u32 exit_intr_info;
++	bool unblock_nmi;
++	u8 vector;
++	bool idtv_info_valid;
++
++	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
++
++	if (enable_vnmi) {
++		if (vmx->loaded_vmcs->nmi_known_unmasked)
++			return;
++		/*
++		 * Can't use vmx->exit_intr_info since we're not sure what
++		 * the exit reason is.
++		 */
++		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
++		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
++		/*
++		 * SDM 3: 27.7.1.2 (September 2008)
++		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
++		 * a guest IRET fault.
++		 * SDM 3: 23.2.2 (September 2008)
++		 * Bit 12 is undefined in any of the following cases:
++		 *  If the VM exit sets the valid bit in the IDT-vectoring
++		 *   information field.
++		 *  If the VM exit is due to a double fault.
++		 */
++		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
++		    vector != DF_VECTOR && !idtv_info_valid)
++			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
++				      GUEST_INTR_STATE_NMI);
++		else
++			vmx->loaded_vmcs->nmi_known_unmasked =
++				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
++				  & GUEST_INTR_STATE_NMI);
++	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
++		vmx->loaded_vmcs->vnmi_blocked_time +=
++			ktime_to_ns(ktime_sub(ktime_get(),
++					      vmx->loaded_vmcs->entry_time));
++}
++
++static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
++				      u32 idt_vectoring_info,
++				      int instr_len_field,
++				      int error_code_field)
++{
++	u8 vector;
++	int type;
++	bool idtv_info_valid;
++
++	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
++
++	vcpu->arch.nmi_injected = false;
++	kvm_clear_exception_queue(vcpu);
++	kvm_clear_interrupt_queue(vcpu);
++
++	if (!idtv_info_valid)
++		return;
++
++	kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
++	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
++
++	switch (type) {
++	case INTR_TYPE_NMI_INTR:
++		vcpu->arch.nmi_injected = true;
++		/*
++		 * SDM 3: 27.7.1.2 (September 2008)
++		 * Clear bit "block by NMI" before VM entry if a NMI
++		 * delivery faulted.
++		 */
++		vmx_set_nmi_mask(vcpu, false);
++		break;
++	case INTR_TYPE_SOFT_EXCEPTION:
++		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
++		/* fall through */
++	case INTR_TYPE_HARD_EXCEPTION:
++		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
++			u32 err = vmcs_read32(error_code_field);
++			kvm_requeue_exception_e(vcpu, vector, err);
++		} else
++			kvm_requeue_exception(vcpu, vector);
++		break;
++	case INTR_TYPE_SOFT_INTR:
++		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
++		/* fall through */
++	case INTR_TYPE_EXT_INTR:
++		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
++		break;
++	default:
++		break;
++	}
++}
++
++static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
++{
++	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
++				  VM_EXIT_INSTRUCTION_LEN,
++				  IDT_VECTORING_ERROR_CODE);
++}
++
++static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
++{
++	__vmx_complete_interrupts(vcpu,
++				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
++				  VM_ENTRY_INSTRUCTION_LEN,
++				  VM_ENTRY_EXCEPTION_ERROR_CODE);
++
++	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
++}
++
++static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
++{
++	int i, nr_msrs;
++	struct perf_guest_switch_msr *msrs;
++
++	msrs = perf_guest_get_msrs(&nr_msrs);
++
++	if (!msrs)
++		return;
++
++	for (i = 0; i < nr_msrs; i++)
++		if (msrs[i].host == msrs[i].guest)
++			clear_atomic_switch_msr(vmx, msrs[i].msr);
++		else
++			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
++					msrs[i].host, false);
++}
++
++static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
++{
++	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
++	if (!vmx->loaded_vmcs->hv_timer_armed)
++		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
++			      PIN_BASED_VMX_PREEMPTION_TIMER);
++	vmx->loaded_vmcs->hv_timer_armed = true;
++}
++
++static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u64 tscl;
++	u32 delta_tsc;
++
++	if (vmx->req_immediate_exit) {
++		vmx_arm_hv_timer(vmx, 0);
++		return;
++	}
++
++	if (vmx->hv_deadline_tsc != -1) {
++		tscl = rdtsc();
++		if (vmx->hv_deadline_tsc > tscl)
++			/* set_hv_timer ensures the delta fits in 32-bits */
++			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
++				cpu_preemption_timer_multi);
++		else
++			delta_tsc = 0;
++
++		vmx_arm_hv_timer(vmx, delta_tsc);
++		return;
++	}
++
++	if (vmx->loaded_vmcs->hv_timer_armed)
++		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
++				PIN_BASED_VMX_PREEMPTION_TIMER);
++	vmx->loaded_vmcs->hv_timer_armed = false;
++}
++
++u64 __always_inline vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx)
++{
++	u64 guestval, hostval = this_cpu_read(x86_spec_ctrl_current);
++
++	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
++		return 0;
++
++	guestval = __rdmsr(MSR_IA32_SPEC_CTRL);
++
++	/*
++	 *
++	 * For legacy IBRS, the IBRS bit always needs to be written after
++	 * transitioning from a less privileged predictor mode, regardless of
++	 * whether the guest/host values differ.
++	 */
++	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
++	    guestval != hostval)
++		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
++
++	barrier_nospec();
++
++	return guestval;
++}
++
++static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned long cr3, cr4, evmcs_rsp;
++	u64 spec_ctrl;
++
++	/* Record the guest's net vcpu time for enforced NMI injections. */
++	if (unlikely(!enable_vnmi &&
++		     vmx->loaded_vmcs->soft_vnmi_blocked))
++		vmx->loaded_vmcs->entry_time = ktime_get();
++
++	/* Don't enter VMX if guest state is invalid, let the exit handler
++	   start emulation until we arrive back to a valid state */
++	if (vmx->emulation_required)
++		return;
++
++	if (vmx->ple_window_dirty) {
++		vmx->ple_window_dirty = false;
++		vmcs_write32(PLE_WINDOW, vmx->ple_window);
++	}
++
++	if (vmx->nested.sync_shadow_vmcs) {
++		copy_vmcs12_to_shadow(vmx);
++		vmx->nested.sync_shadow_vmcs = false;
++	}
++
++	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
++		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
++	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
++		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
++
++	cr3 = __get_current_cr3_fast();
++	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
++		vmcs_writel(HOST_CR3, cr3);
++		vmx->loaded_vmcs->host_state.cr3 = cr3;
++	}
++
++	cr4 = cr4_read_shadow();
++	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
++		vmcs_writel(HOST_CR4, cr4);
++		vmx->loaded_vmcs->host_state.cr4 = cr4;
++	}
++
++	/* When single-stepping over STI and MOV SS, we must clear the
++	 * corresponding interruptibility bits in the guest state. Otherwise
++	 * vmentry fails as it then expects bit 14 (BS) in pending debug
++	 * exceptions being set, but that's not correct for the guest debugging
++	 * case. */
++	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
++		vmx_set_interrupt_shadow(vcpu, 0);
++
++	kvm_load_guest_xcr0(vcpu);
++
++	if (static_cpu_has(X86_FEATURE_PKU) &&
++	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
++	    vcpu->arch.pkru != vmx->host_pkru)
++		__write_pkru(vcpu->arch.pkru);
++
++	atomic_switch_perf_msrs(vmx);
++
++	vmx_update_hv_timer(vcpu);
++
++	/*
++	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
++	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
++	 * is no need to worry about the conditional branch over the wrmsr
++	 * being speculatively taken.
++	 */
++	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
++
++	vmx->__launched = vmx->loaded_vmcs->launched;
++
++	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
++		(unsigned long)&current_evmcs->host_rsp : 0;
++
++	/* L1D Flush includes CPU buffer clear to mitigate MDS */
++	if (static_branch_unlikely(&vmx_l1d_should_flush))
++		vmx_l1d_flush(vcpu);
++	else if (static_branch_unlikely(&mds_user_clear))
++		mds_clear_cpu_buffers();
++	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
++		 kvm_arch_has_assigned_device(vcpu->kvm))
++		mds_clear_cpu_buffers();
++
++	vmx_disable_fb_clear(vmx);
++
++	asm volatile (
++		/* Store host registers */
++		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
++		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
++		"push %%" _ASM_CX " \n\t"
++		"cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
++		"je 1f \n\t"
++		"mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
++		/* Avoid VMWRITE when Enlightened VMCS is in use */
++		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
++		"jz 2f \n\t"
++		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
++		"jmp 1f \n\t"
++		"2: \n\t"
++		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
++		"1: \n\t"
++		/* Reload cr2 if changed */
++		"mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
++		"mov %%cr2, %%" _ASM_DX " \n\t"
++		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
++		"je 3f \n\t"
++		"mov %%" _ASM_AX", %%cr2 \n\t"
++		"3: \n\t"
++		/* Check if vmlaunch of vmresume is needed */
++		"cmpb $0, %c[launched](%%" _ASM_CX ") \n\t"
++		/* Load guest registers.  Don't clobber flags. */
++		"mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
++		"mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
++		"mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
++		"mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
++		"mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
++		"mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
++#ifdef CONFIG_X86_64
++		"mov %c[r8](%%" _ASM_CX "),  %%r8  \n\t"
++		"mov %c[r9](%%" _ASM_CX "),  %%r9  \n\t"
++		"mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
++		"mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
++		"mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
++		"mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
++		"mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
++		"mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
++#endif
++		/* Load guest RCX.  This kills the vmx_vcpu pointer! */
++		"mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
++
++		/* Enter guest mode */
++		"jne 1f \n\t"
++		__ex(ASM_VMX_VMLAUNCH) "\n\t"
++		"jmp 2f \n\t"
++		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
++		"2: "
++
++		/* Save guest's RCX to the stack placeholder (see above) */
++		"mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
++
++		/* Load host's RCX, i.e. the vmx_vcpu pointer */
++		"pop %%" _ASM_CX " \n\t"
++
++		/* Set vmx->fail based on EFLAGS.{CF,ZF} */
++		"setbe %c[fail](%%" _ASM_CX ")\n\t"
++
++		/* Save all guest registers, including RCX from the stack */
++		"mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
++		"mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
++		__ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
++		"mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
++		"mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
++		"mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
++		"mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
++#ifdef CONFIG_X86_64
++		"mov %%r8,  %c[r8](%%" _ASM_CX ") \n\t"
++		"mov %%r9,  %c[r9](%%" _ASM_CX ") \n\t"
++		"mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
++		"mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
++		"mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
++		"mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
++		"mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
++		"mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
++
++		/*
++		 * Clear all general purpose registers (except RSP, which is loaded by
++		 * the CPU during VM-Exit) to prevent speculative use of the guest's
++		 * values, even those that are saved/loaded via the stack.  In theory,
++		 * an L1 cache miss when restoring registers could lead to speculative
++		 * execution with the guest's values.  Zeroing XORs are dirt cheap,
++		 * i.e. the extra paranoia is essentially free.
++		 */
++		"xor %%r8d,  %%r8d \n\t"
++		"xor %%r9d,  %%r9d \n\t"
++		"xor %%r10d, %%r10d \n\t"
++		"xor %%r11d, %%r11d \n\t"
++		"xor %%r12d, %%r12d \n\t"
++		"xor %%r13d, %%r13d \n\t"
++		"xor %%r14d, %%r14d \n\t"
++		"xor %%r15d, %%r15d \n\t"
++#endif
++		"mov %%cr2, %%" _ASM_AX "   \n\t"
++		"mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
++
++		"xor %%eax, %%eax \n\t"
++		"xor %%ebx, %%ebx \n\t"
++		"xor %%ecx, %%ecx \n\t"
++		"xor %%edx, %%edx \n\t"
++		"xor %%esi, %%esi \n\t"
++		"xor %%edi, %%edi \n\t"
++		"xor %%ebp, %%ebp \n\t"
++		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
++		".pushsection .rodata \n\t"
++		".global vmx_return \n\t"
++		"vmx_return: " _ASM_PTR " 2b \n\t"
++		".popsection"
++	      : "=c"((int){0}), "=d"((int){0}), "=S"((int){0})
++	      : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
++		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
++		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
++		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
++		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
++		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
++		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
++		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
++		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
++		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
++		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
++#ifdef CONFIG_X86_64
++		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
++		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
++		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
++		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
++		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
++		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
++		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
++		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
++#endif
++		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
++		[wordsize]"i"(sizeof(ulong))
++	      : "cc", "memory"
++#ifdef CONFIG_X86_64
++		, "rax", "rbx", "rdi"
++		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
++#else
++		, "eax", "ebx", "edi"
++#endif
++	      );
++
++	/*
++	 * IMPORTANT: RSB filling and SPEC_CTRL handling must be done before
++	 * the first unbalanced RET after vmexit!
++	 *
++	 * For retpoline or IBRS, RSB filling is needed to prevent poisoned RSB
++	 * entries and (in some cases) RSB underflow.
++	 *
++	 * eIBRS has its own protection against poisoned RSB, so it doesn't
++	 * need the RSB filling sequence.  But it does need to be enabled, and a
++	 * single call to retire, before the first unbalanced RET.
++	 *
++	 * So no RETs before vmx_spec_ctrl_restore_host() below.
++	 */
++	vmexit_fill_RSB();
++
++	/* Save this for below */
++	spec_ctrl = vmx_spec_ctrl_restore_host(vmx);
++
++	vmx_enable_fb_clear(vmx);
++
++	/*
++	 * We do not use IBRS in the kernel. If this vCPU has used the
++	 * SPEC_CTRL MSR it may have left it on; save the value and
++	 * turn it off. This is much more efficient than blindly adding
++	 * it to the atomic save/restore list. Especially as the former
++	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
++	 *
++	 * For non-nested case:
++	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
++	 * save it.
++	 *
++	 * For nested case:
++	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
++	 * save it.
++	 */
++	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
++		vmx->spec_ctrl = spec_ctrl;
++
++	/* All fields are clean at this point */
++	if (static_branch_unlikely(&enable_evmcs))
++		current_evmcs->hv_clean_fields |=
++			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
++
++	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
++	if (vmx->host_debugctlmsr)
++		update_debugctlmsr(vmx->host_debugctlmsr);
++
++#ifndef CONFIG_X86_64
++	/*
++	 * The sysexit path does not restore ds/es, so we must set them to
++	 * a reasonable value ourselves.
++	 *
++	 * We can't defer this to vmx_prepare_switch_to_host() since that
++	 * function may be executed in interrupt context, which saves and
++	 * restore segments around it, nullifying its effect.
++	 */
++	loadsegment(ds, __USER_DS);
++	loadsegment(es, __USER_DS);
++#endif
++
++	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
++				  | (1 << VCPU_EXREG_RFLAGS)
++				  | (1 << VCPU_EXREG_PDPTR)
++				  | (1 << VCPU_EXREG_SEGMENTS)
++				  | (1 << VCPU_EXREG_CR3));
++	vcpu->arch.regs_dirty = 0;
++
++	/*
++	 * eager fpu is enabled if PKEY is supported and CR4 is switched
++	 * back on host, so it is safe to read guest PKRU from current
++	 * XSAVE.
++	 */
++	if (static_cpu_has(X86_FEATURE_PKU) &&
++	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
++		vcpu->arch.pkru = __read_pkru();
++		if (vcpu->arch.pkru != vmx->host_pkru)
++			__write_pkru(vmx->host_pkru);
++	}
++
++	kvm_put_guest_xcr0(vcpu);
++
++	vmx->nested.nested_run_pending = 0;
++	vmx->idt_vectoring_info = 0;
++
++	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
++	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
++		kvm_machine_check();
++
++	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
++		return;
++
++	vmx->loaded_vmcs->launched = 1;
++	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
++
++	vmx_complete_atomic_exit(vmx);
++	vmx_recover_nmi_blocking(vmx);
++	vmx_complete_interrupts(vmx);
++}
++STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
++
++static struct kvm *vmx_vm_alloc(void)
++{
++	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
++
++	if (!kvm_vmx)
++		return NULL;
++
++	return &kvm_vmx->kvm;
++}
++
++static void vmx_vm_free(struct kvm *kvm)
++{
++	vfree(to_kvm_vmx(kvm));
++}
++
++static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int cpu;
++
++	if (vmx->loaded_vmcs == vmcs)
++		return;
++
++	cpu = get_cpu();
++	vmx_vcpu_put(vcpu);
++	vmx->loaded_vmcs = vmcs;
++	vmx_vcpu_load(vcpu, cpu);
++	put_cpu();
++}
++
++/*
++ * Ensure that the current vmcs of the logical processor is the
++ * vmcs01 of the vcpu before calling free_nested().
++ */
++static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
++{
++       struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++       vcpu_load(vcpu);
++       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
++       free_nested(vmx);
++       vcpu_put(vcpu);
++}
++
++static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (enable_pml)
++		vmx_destroy_pml_buffer(vmx);
++	free_vpid(vmx->vpid);
++	leave_guest_mode(vcpu);
++	vmx_free_vcpu_nested(vcpu);
++	free_loaded_vmcs(vmx->loaded_vmcs);
++	kfree(vmx->guest_msrs);
++	kvm_vcpu_uninit(vcpu);
++	kmem_cache_free(kvm_vcpu_cache, vmx);
++}
++
++static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
++{
++	int err;
++	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
++	unsigned long *msr_bitmap;
++	int cpu;
++
++	if (!vmx)
++		return ERR_PTR(-ENOMEM);
++
++	vmx->vpid = allocate_vpid();
++
++	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
++	if (err)
++		goto free_vcpu;
++
++	err = -ENOMEM;
++
++	/*
++	 * If PML is turned on, failure on enabling PML just results in failure
++	 * of creating the vcpu, therefore we can simplify PML logic (by
++	 * avoiding dealing with cases, such as enabling PML partially on vcpus
++	 * for the guest, etc.
++	 */
++	if (enable_pml) {
++		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
++		if (!vmx->pml_pg)
++			goto uninit_vcpu;
++	}
++
++	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
++	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
++		     > PAGE_SIZE);
++
++	if (!vmx->guest_msrs)
++		goto free_pml;
++
++	err = alloc_loaded_vmcs(&vmx->vmcs01);
++	if (err < 0)
++		goto free_msrs;
++
++	msr_bitmap = vmx->vmcs01.msr_bitmap;
++	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
++	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
++	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
++	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
++	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
++	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
++	vmx->msr_bitmap_mode = 0;
++
++	vmx->loaded_vmcs = &vmx->vmcs01;
++	cpu = get_cpu();
++	vmx_vcpu_load(&vmx->vcpu, cpu);
++	vmx->vcpu.cpu = cpu;
++	vmx_vcpu_setup(vmx);
++	vmx_vcpu_put(&vmx->vcpu);
++	put_cpu();
++	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
++		err = alloc_apic_access_page(kvm);
++		if (err)
++			goto free_vmcs;
++	}
++
++	if (enable_ept && !enable_unrestricted_guest) {
++		err = init_rmode_identity_map(kvm);
++		if (err)
++			goto free_vmcs;
++	}
++
++	if (nested)
++		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
++					   kvm_vcpu_apicv_active(&vmx->vcpu));
++
++	vmx->nested.posted_intr_nv = -1;
++	vmx->nested.current_vmptr = -1ull;
++
++	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
++
++	/*
++	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
++	 * or POSTED_INTR_WAKEUP_VECTOR.
++	 */
++	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
++	vmx->pi_desc.sn = 1;
++
++	return &vmx->vcpu;
++
++free_vmcs:
++	free_loaded_vmcs(vmx->loaded_vmcs);
++free_msrs:
++	kfree(vmx->guest_msrs);
++free_pml:
++	vmx_destroy_pml_buffer(vmx);
++uninit_vcpu:
++	kvm_vcpu_uninit(&vmx->vcpu);
++free_vcpu:
++	free_vpid(vmx->vpid);
++	kmem_cache_free(kvm_vcpu_cache, vmx);
++	return ERR_PTR(err);
++}
++
++#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
++#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
++
++static int vmx_vm_init(struct kvm *kvm)
++{
++	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
++
++	if (!ple_gap)
++		kvm->arch.pause_in_guest = true;
++
++	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
++		switch (l1tf_mitigation) {
++		case L1TF_MITIGATION_OFF:
++		case L1TF_MITIGATION_FLUSH_NOWARN:
++			/* 'I explicitly don't care' is set */
++			break;
++		case L1TF_MITIGATION_FLUSH:
++		case L1TF_MITIGATION_FLUSH_NOSMT:
++		case L1TF_MITIGATION_FULL:
++			/*
++			 * Warn upon starting the first VM in a potentially
++			 * insecure environment.
++			 */
++			if (sched_smt_active())
++				pr_warn_once(L1TF_MSG_SMT);
++			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
++				pr_warn_once(L1TF_MSG_L1D);
++			break;
++		case L1TF_MITIGATION_FULL_FORCE:
++			/* Flush is enforced */
++			break;
++		}
++	}
++	return 0;
++}
++
++static void __init vmx_check_processor_compat(void *rtn)
++{
++	struct vmcs_config vmcs_conf;
++
++	*(int *)rtn = 0;
++	if (setup_vmcs_config(&vmcs_conf) < 0)
++		*(int *)rtn = -EIO;
++	nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
++	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
++		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
++				smp_processor_id());
++		*(int *)rtn = -EIO;
++	}
++}
++
++static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
++{
++	u8 cache;
++	u64 ipat = 0;
++
++	/* For VT-d and EPT combination
++	 * 1. MMIO: always map as UC
++	 * 2. EPT with VT-d:
++	 *   a. VT-d without snooping control feature: can't guarantee the
++	 *	result, try to trust guest.
++	 *   b. VT-d with snooping control feature: snooping control feature of
++	 *	VT-d engine can guarantee the cache correctness. Just set it
++	 *	to WB to keep consistent with host. So the same as item 3.
++	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
++	 *    consistent with host MTRR
++	 */
++	if (is_mmio) {
++		cache = MTRR_TYPE_UNCACHABLE;
++		goto exit;
++	}
++
++	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
++		ipat = VMX_EPT_IPAT_BIT;
++		cache = MTRR_TYPE_WRBACK;
++		goto exit;
++	}
++
++	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
++		ipat = VMX_EPT_IPAT_BIT;
++		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
++			cache = MTRR_TYPE_WRBACK;
++		else
++			cache = MTRR_TYPE_UNCACHABLE;
++		goto exit;
++	}
++
++	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
++
++exit:
++	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
++}
++
++static int vmx_get_lpage_level(void)
++{
++	if (enable_ept && !cpu_has_vmx_ept_1g_page())
++		return PT_DIRECTORY_LEVEL;
++	else
++		/* For shadow and EPT supported 1GB page */
++		return PT_PDPE_LEVEL;
++}
++
++static void vmcs_set_secondary_exec_control(u32 new_ctl)
++{
++	/*
++	 * These bits in the secondary execution controls field
++	 * are dynamic, the others are mostly based on the hypervisor
++	 * architecture and the guest's CPUID.  Do not touch the
++	 * dynamic bits.
++	 */
++	u32 mask =
++		SECONDARY_EXEC_SHADOW_VMCS |
++		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++		SECONDARY_EXEC_DESC;
++
++	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
++
++	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
++		     (new_ctl & ~mask) | (cur_ctl & mask));
++}
++
++/*
++ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
++ * (indicating "allowed-1") if they are supported in the guest's CPUID.
++ */
++static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct kvm_cpuid_entry2 *entry;
++
++	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
++	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
++
++#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
++	if (entry && (entry->_reg & (_cpuid_mask)))			\
++		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
++} while (0)
++
++	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
++	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
++	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
++	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
++	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
++	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
++	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
++	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
++	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
++	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
++	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
++	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
++	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
++	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
++	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
++
++	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
++	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
++	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
++	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
++	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
++	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
++
++#undef cr4_fixed1_update
++}
++
++static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (kvm_mpx_supported()) {
++		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
++
++		if (mpx_enabled) {
++			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
++			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
++		} else {
++			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
++			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
++		}
++	}
++}
++
++static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (cpu_has_secondary_exec_ctrls()) {
++		vmx_compute_secondary_exec_control(vmx);
++		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
++	}
++
++	if (nested_vmx_allowed(vcpu))
++		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
++			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
++	else
++		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
++			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
++
++	if (nested_vmx_allowed(vcpu)) {
++		nested_vmx_cr_fixed1_bits_update(vcpu);
++		nested_vmx_entry_exit_ctls_update(vcpu);
++	}
++}
++
++static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
++{
++	if (func == 1 && nested)
++		entry->ecx |= bit(X86_FEATURE_VMX);
++}
++
++static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
++		struct x86_exception *fault)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 exit_reason;
++	unsigned long exit_qualification = vcpu->arch.exit_qualification;
++
++	if (vmx->nested.pml_full) {
++		exit_reason = EXIT_REASON_PML_FULL;
++		vmx->nested.pml_full = false;
++		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
++	} else if (fault->error_code & PFERR_RSVD_MASK)
++		exit_reason = EXIT_REASON_EPT_MISCONFIG;
++	else
++		exit_reason = EXIT_REASON_EPT_VIOLATION;
++
++	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
++	vmcs12->guest_physical_address = fault->address;
++}
++
++static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
++{
++	return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
++}
++
++/* Callbacks for nested_ept_init_mmu_context: */
++
++static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
++{
++	/* return the page table to be shadowed - in our case, EPT12 */
++	return get_vmcs12(vcpu)->ept_pointer;
++}
++
++static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
++{
++	WARN_ON(mmu_is_nested(vcpu));
++	if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
++		return 1;
++
++	kvm_init_shadow_ept_mmu(vcpu,
++			to_vmx(vcpu)->nested.msrs.ept_caps &
++			VMX_EPT_EXECUTE_ONLY_BIT,
++			nested_ept_ad_enabled(vcpu),
++			nested_ept_get_cr3(vcpu));
++	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
++	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
++	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
++
++	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
++	return 0;
++}
++
++static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
++{
++	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
++}
++
++static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
++					    u16 error_code)
++{
++	bool inequality, bit;
++
++	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
++	inequality =
++		(error_code & vmcs12->page_fault_error_code_mask) !=
++		 vmcs12->page_fault_error_code_match;
++	return inequality ^ bit;
++}
++
++static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
++		struct x86_exception *fault)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++	WARN_ON(!is_guest_mode(vcpu));
++
++	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
++		!to_vmx(vcpu)->nested.nested_run_pending) {
++		vmcs12->vm_exit_intr_error_code = fault->error_code;
++		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
++				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
++				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
++				  fault->address);
++	} else {
++		kvm_inject_page_fault(vcpu, fault);
++	}
++}
++
++static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
++						 struct vmcs12 *vmcs12);
++
++static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct page *page;
++	u64 hpa;
++
++	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
++		/*
++		 * Translate L1 physical address to host physical
++		 * address for vmcs02. Keep the page pinned, so this
++		 * physical address remains valid. We keep a reference
++		 * to it so we can release it later.
++		 */
++		if (vmx->nested.apic_access_page) { /* shouldn't happen */
++			kvm_release_page_dirty(vmx->nested.apic_access_page);
++			vmx->nested.apic_access_page = NULL;
++		}
++		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
++		/*
++		 * If translation failed, no matter: This feature asks
++		 * to exit when accessing the given address, and if it
++		 * can never be accessed, this feature won't do
++		 * anything anyway.
++		 */
++		if (!is_error_page(page)) {
++			vmx->nested.apic_access_page = page;
++			hpa = page_to_phys(vmx->nested.apic_access_page);
++			vmcs_write64(APIC_ACCESS_ADDR, hpa);
++		} else {
++			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
++					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
++		}
++	}
++
++	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
++		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
++			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
++			vmx->nested.virtual_apic_page = NULL;
++		}
++		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
++
++		/*
++		 * If translation failed, VM entry will fail because
++		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
++		 * Failing the vm entry is _not_ what the processor
++		 * does but it's basically the only possibility we
++		 * have.  We could still enter the guest if CR8 load
++		 * exits are enabled, CR8 store exits are enabled, and
++		 * virtualize APIC access is disabled; in this case
++		 * the processor would never use the TPR shadow and we
++		 * could simply clear the bit from the execution
++		 * control.  But such a configuration is useless, so
++		 * let's keep the code simple.
++		 */
++		if (!is_error_page(page)) {
++			vmx->nested.virtual_apic_page = page;
++			hpa = page_to_phys(vmx->nested.virtual_apic_page);
++			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
++		}
++	}
++
++	if (nested_cpu_has_posted_intr(vmcs12)) {
++		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
++			kunmap(vmx->nested.pi_desc_page);
++			kvm_release_page_dirty(vmx->nested.pi_desc_page);
++			vmx->nested.pi_desc_page = NULL;
++			vmx->nested.pi_desc = NULL;
++			vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
++		}
++		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
++		if (is_error_page(page))
++			return;
++		vmx->nested.pi_desc_page = page;
++		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
++		vmx->nested.pi_desc =
++			(struct pi_desc *)((void *)vmx->nested.pi_desc +
++			(unsigned long)(vmcs12->posted_intr_desc_addr &
++			(PAGE_SIZE - 1)));
++		vmcs_write64(POSTED_INTR_DESC_ADDR,
++			page_to_phys(vmx->nested.pi_desc_page) +
++			(unsigned long)(vmcs12->posted_intr_desc_addr &
++			(PAGE_SIZE - 1)));
++	}
++	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
++		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
++			      CPU_BASED_USE_MSR_BITMAPS);
++	else
++		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
++				CPU_BASED_USE_MSR_BITMAPS);
++}
++
++static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
++{
++	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	/*
++	 * A timer value of zero is architecturally guaranteed to cause
++	 * a VMExit prior to executing any instructions in the guest.
++	 */
++	if (preemption_timeout == 0) {
++		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
++		return;
++	}
++
++	if (vcpu->arch.virtual_tsc_khz == 0)
++		return;
++
++	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
++	preemption_timeout *= 1000000;
++	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
++	hrtimer_start(&vmx->nested.preemption_timer,
++		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
++}
++
++static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
++					       struct vmcs12 *vmcs12)
++{
++	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
++		return 0;
++
++	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
++	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
++		return -EINVAL;
++
++	return 0;
++}
++
++static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
++						struct vmcs12 *vmcs12)
++{
++	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
++		return 0;
++
++	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
++		return -EINVAL;
++
++	return 0;
++}
++
++static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
++						struct vmcs12 *vmcs12)
++{
++	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
++		return 0;
++
++	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
++		return -EINVAL;
++
++	return 0;
++}
++
++static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
++	int msr;
++
++	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
++		unsigned word = msr / BITS_PER_LONG;
++
++		msr_bitmap[word] = ~0;
++		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
++	}
++}
++
++/*
++ * Merge L0's and L1's MSR bitmap, return false to indicate that
++ * we do not use the hardware.
++ */
++static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
++						 struct vmcs12 *vmcs12)
++{
++	int msr;
++	struct page *page;
++	unsigned long *msr_bitmap_l1;
++	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
++	/*
++	 * pred_cmd & spec_ctrl are trying to verify two things:
++	 *
++	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
++	 *    ensures that we do not accidentally generate an L02 MSR bitmap
++	 *    from the L12 MSR bitmap that is too permissive.
++	 * 2. That L1 or L2s have actually used the MSR. This avoids
++	 *    unnecessarily merging of the bitmap if the MSR is unused. This
++	 *    works properly because we only update the L01 MSR bitmap lazily.
++	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
++	 *    updated to reflect this when L1 (or its L2s) actually write to
++	 *    the MSR.
++	 */
++	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
++	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
++
++	/* Nothing to do if the MSR bitmap is not in use.  */
++	if (!cpu_has_vmx_msr_bitmap() ||
++	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
++		return false;
++
++	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
++	    !pred_cmd && !spec_ctrl)
++		return false;
++
++	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
++	if (is_error_page(page))
++		return false;
++
++	msr_bitmap_l1 = (unsigned long *)kmap(page);
++
++	/*
++	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
++	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
++	 * the x2APIC MSR range and selectively disable them below.
++	 */
++	enable_x2apic_msr_intercepts(msr_bitmap_l0);
++
++	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
++		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
++			/*
++			 * L0 need not intercept reads for MSRs between 0x800
++			 * and 0x8ff, it just lets the processor take the value
++			 * from the virtual-APIC page; take those 256 bits
++			 * directly from the L1 bitmap.
++			 */
++			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
++				unsigned word = msr / BITS_PER_LONG;
++
++				msr_bitmap_l0[word] = msr_bitmap_l1[word];
++			}
++		}
++
++		nested_vmx_disable_intercept_for_msr(
++			msr_bitmap_l1, msr_bitmap_l0,
++			X2APIC_MSR(APIC_TASKPRI),
++			MSR_TYPE_R | MSR_TYPE_W);
++
++		if (nested_cpu_has_vid(vmcs12)) {
++			nested_vmx_disable_intercept_for_msr(
++				msr_bitmap_l1, msr_bitmap_l0,
++				X2APIC_MSR(APIC_EOI),
++				MSR_TYPE_W);
++			nested_vmx_disable_intercept_for_msr(
++				msr_bitmap_l1, msr_bitmap_l0,
++				X2APIC_MSR(APIC_SELF_IPI),
++				MSR_TYPE_W);
++		}
++	}
++
++	if (spec_ctrl)
++		nested_vmx_disable_intercept_for_msr(
++					msr_bitmap_l1, msr_bitmap_l0,
++					MSR_IA32_SPEC_CTRL,
++					MSR_TYPE_R | MSR_TYPE_W);
++
++	if (pred_cmd)
++		nested_vmx_disable_intercept_for_msr(
++					msr_bitmap_l1, msr_bitmap_l0,
++					MSR_IA32_PRED_CMD,
++					MSR_TYPE_W);
++
++	kunmap(page);
++	kvm_release_page_clean(page);
++
++	return true;
++}
++
++static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
++				       struct vmcs12 *vmcs12)
++{
++	struct vmcs12 *shadow;
++	struct page *page;
++
++	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
++	    vmcs12->vmcs_link_pointer == -1ull)
++		return;
++
++	shadow = get_shadow_vmcs12(vcpu);
++	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
++
++	memcpy(shadow, kmap(page), VMCS12_SIZE);
++
++	kunmap(page);
++	kvm_release_page_clean(page);
++}
++
++static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
++					      struct vmcs12 *vmcs12)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
++	    vmcs12->vmcs_link_pointer == -1ull)
++		return;
++
++	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
++			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
++}
++
++static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
++					  struct vmcs12 *vmcs12)
++{
++	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
++	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
++		return -EINVAL;
++	else
++		return 0;
++}
++
++static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
++					   struct vmcs12 *vmcs12)
++{
++	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
++	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
++	    !nested_cpu_has_vid(vmcs12) &&
++	    !nested_cpu_has_posted_intr(vmcs12))
++		return 0;
++
++	/*
++	 * If virtualize x2apic mode is enabled,
++	 * virtualize apic access must be disabled.
++	 */
++	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
++	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
++		return -EINVAL;
++
++	/*
++	 * If virtual interrupt delivery is enabled,
++	 * we must exit on external interrupts.
++	 */
++	if (nested_cpu_has_vid(vmcs12) &&
++	   !nested_exit_on_intr(vcpu))
++		return -EINVAL;
++
++	/*
++	 * bits 15:8 should be zero in posted_intr_nv,
++	 * the descriptor address has been already checked
++	 * in nested_get_vmcs12_pages.
++	 *
++	 * bits 5:0 of posted_intr_desc_addr should be zero.
++	 */
++	if (nested_cpu_has_posted_intr(vmcs12) &&
++	   (!nested_cpu_has_vid(vmcs12) ||
++	    !nested_exit_intr_ack_set(vcpu) ||
++	    (vmcs12->posted_intr_nv & 0xff00) ||
++	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
++	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
++		return -EINVAL;
++
++	/* tpr shadow is needed by all apicv features. */
++	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
++		return -EINVAL;
++
++	return 0;
++}
++
++static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
++				       unsigned long count_field,
++				       unsigned long addr_field)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	int maxphyaddr;
++	u64 count, addr;
++
++	if (vmcs12_read_any(vmcs12, count_field, &count) ||
++	    vmcs12_read_any(vmcs12, addr_field, &addr)) {
++		WARN_ON(1);
++		return -EINVAL;
++	}
++	if (count == 0)
++		return 0;
++	maxphyaddr = cpuid_maxphyaddr(vcpu);
++	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
++	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
++		pr_debug_ratelimited(
++			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
++			addr_field, maxphyaddr, count, addr);
++		return -EINVAL;
++	}
++	return 0;
++}
++
++static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
++						struct vmcs12 *vmcs12)
++{
++	if (vmcs12->vm_exit_msr_load_count == 0 &&
++	    vmcs12->vm_exit_msr_store_count == 0 &&
++	    vmcs12->vm_entry_msr_load_count == 0)
++		return 0; /* Fast path */
++	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
++					VM_EXIT_MSR_LOAD_ADDR) ||
++	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
++					VM_EXIT_MSR_STORE_ADDR) ||
++	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
++					VM_ENTRY_MSR_LOAD_ADDR))
++		return -EINVAL;
++	return 0;
++}
++
++static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
++					 struct vmcs12 *vmcs12)
++{
++	u64 address = vmcs12->pml_address;
++	int maxphyaddr = cpuid_maxphyaddr(vcpu);
++
++	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
++		if (!nested_cpu_has_ept(vmcs12) ||
++		    !IS_ALIGNED(address, 4096)  ||
++		    address >> maxphyaddr)
++			return -EINVAL;
++	}
++
++	return 0;
++}
++
++static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
++						 struct vmcs12 *vmcs12)
++{
++	if (!nested_cpu_has_shadow_vmcs(vmcs12))
++		return 0;
++
++	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
++	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
++		return -EINVAL;
++
++	return 0;
++}
++
++static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
++				       struct vmx_msr_entry *e)
++{
++	/* x2APIC MSR accesses are not allowed */
++	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
++		return -EINVAL;
++	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
++	    e->index == MSR_IA32_UCODE_REV)
++		return -EINVAL;
++	if (e->reserved != 0)
++		return -EINVAL;
++	return 0;
++}
++
++static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
++				     struct vmx_msr_entry *e)
++{
++	if (e->index == MSR_FS_BASE ||
++	    e->index == MSR_GS_BASE ||
++	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
++	    nested_vmx_msr_check_common(vcpu, e))
++		return -EINVAL;
++	return 0;
++}
++
++static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
++				      struct vmx_msr_entry *e)
++{
++	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
++	    nested_vmx_msr_check_common(vcpu, e))
++		return -EINVAL;
++	return 0;
++}
++
++/*
++ * Load guest's/host's msr at nested entry/exit.
++ * return 0 for success, entry index for failure.
++ */
++static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
++{
++	u32 i;
++	struct vmx_msr_entry e;
++	struct msr_data msr;
++
++	msr.host_initiated = false;
++	for (i = 0; i < count; i++) {
++		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
++					&e, sizeof(e))) {
++			pr_debug_ratelimited(
++				"%s cannot read MSR entry (%u, 0x%08llx)\n",
++				__func__, i, gpa + i * sizeof(e));
++			goto fail;
++		}
++		if (nested_vmx_load_msr_check(vcpu, &e)) {
++			pr_debug_ratelimited(
++				"%s check failed (%u, 0x%x, 0x%x)\n",
++				__func__, i, e.index, e.reserved);
++			goto fail;
++		}
++		msr.index = e.index;
++		msr.data = e.value;
++		if (kvm_set_msr(vcpu, &msr)) {
++			pr_debug_ratelimited(
++				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
++				__func__, i, e.index, e.value);
++			goto fail;
++		}
++	}
++	return 0;
++fail:
++	return i + 1;
++}
++
++static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
++{
++	u32 i;
++	struct vmx_msr_entry e;
++
++	for (i = 0; i < count; i++) {
++		struct msr_data msr_info;
++		if (kvm_vcpu_read_guest(vcpu,
++					gpa + i * sizeof(e),
++					&e, 2 * sizeof(u32))) {
++			pr_debug_ratelimited(
++				"%s cannot read MSR entry (%u, 0x%08llx)\n",
++				__func__, i, gpa + i * sizeof(e));
++			return -EINVAL;
++		}
++		if (nested_vmx_store_msr_check(vcpu, &e)) {
++			pr_debug_ratelimited(
++				"%s check failed (%u, 0x%x, 0x%x)\n",
++				__func__, i, e.index, e.reserved);
++			return -EINVAL;
++		}
++		msr_info.host_initiated = false;
++		msr_info.index = e.index;
++		if (kvm_get_msr(vcpu, &msr_info)) {
++			pr_debug_ratelimited(
++				"%s cannot read MSR (%u, 0x%x)\n",
++				__func__, i, e.index);
++			return -EINVAL;
++		}
++		if (kvm_vcpu_write_guest(vcpu,
++					 gpa + i * sizeof(e) +
++					     offsetof(struct vmx_msr_entry, value),
++					 &msr_info.data, sizeof(msr_info.data))) {
++			pr_debug_ratelimited(
++				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
++				__func__, i, e.index, msr_info.data);
++			return -EINVAL;
++		}
++	}
++	return 0;
++}
++
++static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
++{
++	unsigned long invalid_mask;
++
++	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
++	return (val & invalid_mask) == 0;
++}
++
++/*
++ * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
++ * emulating VM entry into a guest with EPT enabled.
++ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
++ * is assigned to entry_failure_code on failure.
++ */
++static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
++			       u32 *entry_failure_code)
++{
++	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
++		if (!nested_cr3_valid(vcpu, cr3)) {
++			*entry_failure_code = ENTRY_FAIL_DEFAULT;
++			return 1;
++		}
++
++		/*
++		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
++		 * must not be dereferenced.
++		 */
++		if (is_pae_paging(vcpu) && !nested_ept) {
++			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
++				*entry_failure_code = ENTRY_FAIL_PDPTE;
++				return 1;
++			}
++		}
++	}
++
++	if (!nested_ept)
++		kvm_mmu_new_cr3(vcpu, cr3, false);
++
++	vcpu->arch.cr3 = cr3;
++	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
++
++	kvm_init_mmu(vcpu, false);
++
++	return 0;
++}
++
++static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
++	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
++	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
++	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
++	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
++	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
++	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
++	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
++	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
++	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
++	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
++	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
++	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
++	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
++	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
++	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
++	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
++	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
++	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
++	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
++	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
++	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
++	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
++	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
++	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
++	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
++	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
++	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
++	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
++	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
++	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
++
++	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
++	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
++		vmcs12->guest_pending_dbg_exceptions);
++	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
++	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
++
++	if (nested_cpu_has_xsaves(vmcs12))
++		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
++	vmcs_write64(VMCS_LINK_POINTER, -1ull);
++
++	if (cpu_has_vmx_posted_intr())
++		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
++
++	/*
++	 * Whether page-faults are trapped is determined by a combination of
++	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
++	 * If enable_ept, L0 doesn't care about page faults and we should
++	 * set all of these to L1's desires. However, if !enable_ept, L0 does
++	 * care about (at least some) page faults, and because it is not easy
++	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
++	 * to exit on each and every L2 page fault. This is done by setting
++	 * MASK=MATCH=0 and (see below) EB.PF=1.
++	 * Note that below we don't need special code to set EB.PF beyond the
++	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
++	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
++	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
++	 */
++	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
++		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
++	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
++		enable_ept ? vmcs12->page_fault_error_code_match : 0);
++
++	/* All VMFUNCs are currently emulated through L0 vmexits.  */
++	if (cpu_has_vmx_vmfunc())
++		vmcs_write64(VM_FUNCTION_CONTROL, 0);
++
++	if (cpu_has_vmx_apicv()) {
++		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
++		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
++		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
++		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
++	}
++
++	/*
++	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
++	 * Some constant fields are set here by vmx_set_constant_host_state().
++	 * Other fields are different per CPU, and will be set later when
++	 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
++	 * is called.
++	 */
++	vmx_set_constant_host_state(vmx);
++
++	/*
++	 * Set the MSR load/store lists to match L0's settings.
++	 */
++	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
++	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
++	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
++	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
++	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
++
++	set_cr4_guest_host_mask(vmx);
++
++	if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
++	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
++		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
++
++	if (enable_vpid) {
++		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
++			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
++		else
++			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
++	}
++
++	/*
++	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
++	 */
++	if (enable_ept) {
++		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
++		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
++		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
++		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
++	}
++
++	if (cpu_has_vmx_msr_bitmap())
++		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
++}
++
++/*
++ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
++ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
++ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
++ * guest in a way that will both be appropriate to L1's requests, and our
++ * needs. In addition to modifying the active vmcs (which is vmcs02), this
++ * function also has additional necessary side-effects, like setting various
++ * vcpu->arch fields.
++ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
++ * is assigned to entry_failure_code on failure.
++ */
++static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
++			  u32 *entry_failure_code)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 exec_control, vmcs12_exec_ctrl;
++
++	if (vmx->nested.dirty_vmcs12) {
++		prepare_vmcs02_full(vcpu, vmcs12);
++		vmx->nested.dirty_vmcs12 = false;
++	}
++
++	/*
++	 * First, the fields that are shadowed.  This must be kept in sync
++	 * with vmx_shadow_fields.h.
++	 */
++
++	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
++	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
++	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
++	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
++	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
++
++	if (vmx->nested.nested_run_pending &&
++	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
++		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
++		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
++	} else {
++		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
++		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
++	}
++	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
++	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
++		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
++	if (vmx->nested.nested_run_pending) {
++		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
++			     vmcs12->vm_entry_intr_info_field);
++		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
++			     vmcs12->vm_entry_exception_error_code);
++		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
++			     vmcs12->vm_entry_instruction_len);
++		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
++			     vmcs12->guest_interruptibility_info);
++		vmx->loaded_vmcs->nmi_known_unmasked =
++			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
++	} else {
++		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
++	}
++	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
++
++	exec_control = vmcs12->pin_based_vm_exec_control;
++
++	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
++	exec_control |= vmcs_config.pin_based_exec_ctrl;
++	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
++	vmx->loaded_vmcs->hv_timer_armed = false;
++
++	/* Posted interrupts setting is only taken from vmcs12.  */
++	if (nested_cpu_has_posted_intr(vmcs12)) {
++		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
++		vmx->nested.pi_pending = false;
++	} else {
++		exec_control &= ~PIN_BASED_POSTED_INTR;
++	}
++
++	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
++
++	vmx->nested.preemption_timer_expired = false;
++	if (nested_cpu_has_preemption_timer(vmcs12))
++		vmx_start_preemption_timer(vcpu);
++
++	if (cpu_has_secondary_exec_ctrls()) {
++		exec_control = vmx->secondary_exec_control;
++
++		/* Take the following fields only from vmcs12 */
++		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++				  SECONDARY_EXEC_ENABLE_INVPCID |
++				  SECONDARY_EXEC_RDTSCP |
++				  SECONDARY_EXEC_XSAVES |
++				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
++				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
++				  SECONDARY_EXEC_ENABLE_VMFUNC);
++		if (nested_cpu_has(vmcs12,
++				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
++			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
++				~SECONDARY_EXEC_ENABLE_PML;
++			exec_control |= vmcs12_exec_ctrl;
++		}
++
++		/* VMCS shadowing for L2 is emulated for now */
++		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
++
++		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
++			vmcs_write16(GUEST_INTR_STATUS,
++				vmcs12->guest_intr_status);
++
++		/*
++		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
++		 * nested_get_vmcs12_pages will either fix it up or
++		 * remove the VM execution control.
++		 */
++		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
++			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
++
++		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
++			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
++
++		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
++	}
++
++	/*
++	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
++	 * entry, but only if the current (host) sp changed from the value
++	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
++	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
++	 * here we just force the write to happen on entry.
++	 */
++	vmx->host_rsp = 0;
++
++	exec_control = vmx_exec_control(vmx); /* L0's desires */
++	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
++	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
++	exec_control &= ~CPU_BASED_TPR_SHADOW;
++	exec_control |= vmcs12->cpu_based_vm_exec_control;
++
++	/*
++	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
++	 * nested_get_vmcs12_pages can't fix it up, the illegal value
++	 * will result in a VM entry failure.
++	 */
++	if (exec_control & CPU_BASED_TPR_SHADOW) {
++		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
++		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
++	} else {
++#ifdef CONFIG_X86_64
++		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
++				CPU_BASED_CR8_STORE_EXITING;
++#endif
++	}
++
++	/*
++	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
++	 * for I/O port accesses.
++	 */
++	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
++	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
++
++	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
++
++	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
++	 * bitwise-or of what L1 wants to trap for L2, and what we want to
++	 * trap. Note that CR0.TS also needs updating - we do this later.
++	 */
++	update_exception_bitmap(vcpu);
++	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
++	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
++
++	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
++	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
++	 * bits are further modified by vmx_set_efer() below.
++	 */
++	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
++
++	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
++	 * emulated by vmx_set_efer(), below.
++	 */
++	vm_entry_controls_init(vmx, 
++		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
++			~VM_ENTRY_IA32E_MODE) |
++		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
++
++	if (vmx->nested.nested_run_pending &&
++	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
++		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
++		vcpu->arch.pat = vmcs12->guest_ia32_pat;
++	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
++		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
++	}
++
++	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
++
++	if (kvm_has_tsc_control)
++		decache_tsc_multiplier(vmx);
++
++	if (enable_vpid) {
++		/*
++		 * There is no direct mapping between vpid02 and vpid12, the
++		 * vpid02 is per-vCPU for L0 and reused while the value of
++		 * vpid12 is changed w/ one invvpid during nested vmentry.
++		 * The vpid12 is allocated by L1 for L2, so it will not
++		 * influence global bitmap(for vpid01 and vpid02 allocation)
++		 * even if spawn a lot of nested vCPUs.
++		 */
++		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
++			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
++				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
++				__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
++			}
++		} else {
++			vmx_flush_tlb(vcpu, true);
++		}
++	}
++
++	if (enable_pml) {
++		/*
++		 * Conceptually we want to copy the PML address and index from
++		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
++		 * since we always flush the log on each vmexit, this happens
++		 * to be equivalent to simply resetting the fields in vmcs02.
++		 */
++		ASSERT(vmx->pml_pg);
++		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
++		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
++	}
++
++	if (nested_cpu_has_ept(vmcs12)) {
++		if (nested_ept_init_mmu_context(vcpu)) {
++			*entry_failure_code = ENTRY_FAIL_DEFAULT;
++			return 1;
++		}
++	} else if (nested_cpu_has2(vmcs12,
++				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
++		vmx_flush_tlb(vcpu, true);
++	}
++
++	/*
++	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
++	 * bits which we consider mandatory enabled.
++	 * The CR0_READ_SHADOW is what L2 should have expected to read given
++	 * the specifications by L1; It's not enough to take
++	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
++	 * have more bits than L1 expected.
++	 */
++	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
++	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
++
++	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
++	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
++
++	if (vmx->nested.nested_run_pending &&
++	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
++		vcpu->arch.efer = vmcs12->guest_ia32_efer;
++	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
++		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
++	else
++		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
++	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
++	vmx_set_efer(vcpu, vcpu->arch.efer);
++
++	/*
++	 * Guest state is invalid and unrestricted guest is disabled,
++	 * which means L1 attempted VMEntry to L2 with invalid state.
++	 * Fail the VMEntry.
++	 */
++	if (vmx->emulation_required) {
++		*entry_failure_code = ENTRY_FAIL_DEFAULT;
++		return 1;
++	}
++
++	/* Shadow page tables on either EPT or shadow page tables. */
++	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
++				entry_failure_code))
++		return 1;
++
++	if (!enable_ept)
++		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
++
++	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
++	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
++	return 0;
++}
++
++static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
++{
++	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
++	    nested_cpu_has_virtual_nmis(vmcs12))
++		return -EINVAL;
++
++	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
++	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
++		return -EINVAL;
++
++	return 0;
++}
++
++static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
++	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (!nested_cpu_has_preemption_timer(vmcs12) &&
++	    nested_cpu_has_save_preemption_timer(vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_pml_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
++				vmx->nested.msrs.procbased_ctls_low,
++				vmx->nested.msrs.procbased_ctls_high) ||
++	    (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
++	     !vmx_control_verify(vmcs12->secondary_vm_exec_control,
++				 vmx->nested.msrs.secondary_ctls_low,
++				 vmx->nested.msrs.secondary_ctls_high)) ||
++	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
++				vmx->nested.msrs.pinbased_ctls_low,
++				vmx->nested.msrs.pinbased_ctls_high) ||
++	    !vmx_control_verify(vmcs12->vm_exit_controls,
++				vmx->nested.msrs.exit_ctls_low,
++				vmx->nested.msrs.exit_ctls_high) ||
++	    !vmx_control_verify(vmcs12->vm_entry_controls,
++				vmx->nested.msrs.entry_ctls_low,
++				vmx->nested.msrs.entry_ctls_high))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_vmx_check_nmi_controls(vmcs12))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (nested_cpu_has_vmfunc(vmcs12)) {
++		if (vmcs12->vm_function_control &
++		    ~vmx->nested.msrs.vmfunc_controls)
++			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++		if (nested_cpu_has_eptp_switching(vmcs12)) {
++			if (!nested_cpu_has_ept(vmcs12) ||
++			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
++				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++		}
++	}
++
++	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
++		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
++	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
++	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
++		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
++
++	/*
++	 * From the Intel SDM, volume 3:
++	 * Fields relevant to VM-entry event injection must be set properly.
++	 * These fields are the VM-entry interruption-information field, the
++	 * VM-entry exception error code, and the VM-entry instruction length.
++	 */
++	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
++		u32 intr_info = vmcs12->vm_entry_intr_info_field;
++		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
++		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
++		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
++		bool should_have_error_code;
++		bool urg = nested_cpu_has2(vmcs12,
++					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
++		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
++
++		/* VM-entry interruption-info field: interruption type */
++		if (intr_type == INTR_TYPE_RESERVED ||
++		    (intr_type == INTR_TYPE_OTHER_EVENT &&
++		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
++			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++		/* VM-entry interruption-info field: vector */
++		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
++		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
++		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
++			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++		/* VM-entry interruption-info field: deliver error code */
++		should_have_error_code =
++			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
++			x86_exception_has_error_code(vector);
++		if (has_error_code != should_have_error_code)
++			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++		/* VM-entry exception error code */
++		if (has_error_code &&
++		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))
++			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++		/* VM-entry interruption-info field: reserved bits */
++		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
++			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++
++		/* VM-entry instruction length */
++		switch (intr_type) {
++		case INTR_TYPE_SOFT_EXCEPTION:
++		case INTR_TYPE_SOFT_INTR:
++		case INTR_TYPE_PRIV_SW_EXCEPTION:
++			if ((vmcs12->vm_entry_instruction_len > 15) ||
++			    (vmcs12->vm_entry_instruction_len == 0 &&
++			     !nested_cpu_has_zero_length_injection(vcpu)))
++				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
++		}
++	}
++
++	return 0;
++}
++
++static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
++					  struct vmcs12 *vmcs12)
++{
++	int r;
++	struct page *page;
++	struct vmcs12 *shadow;
++
++	if (vmcs12->vmcs_link_pointer == -1ull)
++		return 0;
++
++	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
++		return -EINVAL;
++
++	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
++	if (is_error_page(page))
++		return -EINVAL;
++
++	r = 0;
++	shadow = kmap(page);
++	if (shadow->hdr.revision_id != VMCS12_REVISION ||
++	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
++		r = -EINVAL;
++	kunmap(page);
++	kvm_release_page_clean(page);
++	return r;
++}
++
++static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
++				  u32 *exit_qual)
++{
++	bool ia32e;
++
++	*exit_qual = ENTRY_FAIL_DEFAULT;
++
++	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
++	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
++		return 1;
++
++	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
++		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
++		return 1;
++	}
++
++	/*
++	 * If the load IA32_EFER VM-entry control is 1, the following checks
++	 * are performed on the field for the IA32_EFER MSR:
++	 * - Bits reserved in the IA32_EFER MSR must be 0.
++	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
++	 *   the IA-32e mode guest VM-exit control. It must also be identical
++	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
++	 *   CR0.PG) is 1.
++	 */
++	if (to_vmx(vcpu)->nested.nested_run_pending &&
++	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
++		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
++		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
++		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
++		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
++		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
++			return 1;
++	}
++
++	/*
++	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
++	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
++	 * the values of the LMA and LME bits in the field must each be that of
++	 * the host address-space size VM-exit control.
++	 */
++	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
++		ia32e = (vmcs12->vm_exit_controls &
++			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
++		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
++		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
++		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
++			return 1;
++	}
++
++	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
++		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
++		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
++			return 1;
++
++	return 0;
++}
++
++/*
++ * If exit_qual is NULL, this is being called from state restore (either RSM
++ * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
++ */
++static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	bool from_vmentry = !!exit_qual;
++	u32 dummy_exit_qual;
++	bool evaluate_pending_interrupts;
++	int r = 0;
++
++	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
++		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
++	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
++		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
++
++	enter_guest_mode(vcpu);
++
++	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
++		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
++	if (kvm_mpx_supported() &&
++		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
++		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
++
++	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
++	vmx_segment_cache_clear(vmx);
++
++	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
++		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
++
++	r = EXIT_REASON_INVALID_STATE;
++	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual))
++		goto fail;
++
++	if (from_vmentry) {
++		nested_get_vmcs12_pages(vcpu);
++
++		r = EXIT_REASON_MSR_LOAD_FAIL;
++		*exit_qual = nested_vmx_load_msr(vcpu,
++	     					 vmcs12->vm_entry_msr_load_addr,
++					      	 vmcs12->vm_entry_msr_load_count);
++		if (*exit_qual)
++			goto fail;
++	} else {
++		/*
++		 * The MMU is not initialized to point at the right entities yet and
++		 * "get pages" would need to read data from the guest (i.e. we will
++		 * need to perform gpa to hpa translation). Request a call
++		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
++		 * have already been set at vmentry time and should not be reset.
++		 */
++		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
++	}
++
++	/*
++	 * If L1 had a pending IRQ/NMI until it executed
++	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
++	 * disallowed (e.g. interrupts disabled), L0 needs to
++	 * evaluate if this pending event should cause an exit from L2
++	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
++	 * intercept EXTERNAL_INTERRUPT).
++	 *
++	 * Usually this would be handled by the processor noticing an
++	 * IRQ/NMI window request, or checking RVI during evaluation of
++	 * pending virtual interrupts.  However, this setting was done
++	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
++	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
++	 */
++	if (unlikely(evaluate_pending_interrupts))
++		kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++	/*
++	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
++	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
++	 * returned as far as L1 is concerned. It will only return (and set
++	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
++	 */
++	return 0;
++
++fail:
++	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
++		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
++	leave_guest_mode(vcpu);
++	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
++	return r;
++}
++
++/*
++ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
++ * for running an L2 nested guest.
++ */
++static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
++{
++	struct vmcs12 *vmcs12;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
++	u32 exit_qual;
++	int ret;
++
++	if (!nested_vmx_check_permission(vcpu))
++		return 1;
++
++	if (!nested_vmx_check_vmcs12(vcpu))
++		goto out;
++
++	vmcs12 = get_vmcs12(vcpu);
++
++	/*
++	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
++	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
++	 * rather than RFLAGS.ZF, and no error number is stored to the
++	 * VM-instruction error field.
++	 */
++	if (vmcs12->hdr.shadow_vmcs) {
++		nested_vmx_failInvalid(vcpu);
++		goto out;
++	}
++
++	if (enable_shadow_vmcs)
++		copy_shadow_to_vmcs12(vmx);
++
++	/*
++	 * The nested entry process starts with enforcing various prerequisites
++	 * on vmcs12 as required by the Intel SDM, and act appropriately when
++	 * they fail: As the SDM explains, some conditions should cause the
++	 * instruction to fail, while others will cause the instruction to seem
++	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
++	 * To speed up the normal (success) code path, we should avoid checking
++	 * for misconfigurations which will anyway be caught by the processor
++	 * when using the merged vmcs02.
++	 */
++	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
++		nested_vmx_failValid(vcpu,
++				     VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
++		goto out;
++	}
++
++	if (vmcs12->launch_state == launch) {
++		nested_vmx_failValid(vcpu,
++			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
++			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
++		goto out;
++	}
++
++	ret = check_vmentry_prereqs(vcpu, vmcs12);
++	if (ret) {
++		nested_vmx_failValid(vcpu, ret);
++		goto out;
++	}
++
++	/*
++	 * After this point, the trap flag no longer triggers a singlestep trap
++	 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
++	 * This is not 100% correct; for performance reasons, we delegate most
++	 * of the checks on host state to the processor.  If those fail,
++	 * the singlestep trap is missed.
++	 */
++	skip_emulated_instruction(vcpu);
++
++	ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
++	if (ret) {
++		nested_vmx_entry_failure(vcpu, vmcs12,
++					 EXIT_REASON_INVALID_STATE, exit_qual);
++		return 1;
++	}
++
++	/*
++	 * We're finally done with prerequisite checking, and can start with
++	 * the nested entry.
++	 */
++
++	vmx->nested.nested_run_pending = 1;
++	ret = enter_vmx_non_root_mode(vcpu, &exit_qual);
++	if (ret) {
++		nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual);
++		vmx->nested.nested_run_pending = 0;
++		return 1;
++	}
++
++	/* Hide L1D cache contents from the nested guest.  */
++	vmx->vcpu.arch.l1tf_flush_l1d = true;
++
++	/*
++	 * Must happen outside of enter_vmx_non_root_mode() as it will
++	 * also be used as part of restoring nVMX state for
++	 * snapshot restore (migration).
++	 *
++	 * In this flow, it is assumed that vmcs12 cache was
++	 * trasferred as part of captured nVMX state and should
++	 * therefore not be read from guest memory (which may not
++	 * exist on destination host yet).
++	 */
++	nested_cache_shadow_vmcs12(vcpu, vmcs12);
++
++	/*
++	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
++	 * awakened by event injection or by an NMI-window VM-exit or
++	 * by an interrupt-window VM-exit, halt the vcpu.
++	 */
++	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
++	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
++	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
++	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
++	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
++		vmx->nested.nested_run_pending = 0;
++		return kvm_vcpu_halt(vcpu);
++	}
++	return 1;
++
++out:
++	return kvm_skip_emulated_instruction(vcpu);
++}
++
++/*
++ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
++ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
++ * This function returns the new value we should put in vmcs12.guest_cr0.
++ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
++ *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
++ *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
++ *     didn't trap the bit, because if L1 did, so would L0).
++ *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
++ *     been modified by L2, and L1 knows it. So just leave the old value of
++ *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
++ *     isn't relevant, because if L0 traps this bit it can set it to anything.
++ *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
++ *     changed these bits, and therefore they need to be updated, but L0
++ *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
++ *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
++ */
++static inline unsigned long
++vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
++{
++	return
++	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
++	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
++	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
++			vcpu->arch.cr0_guest_owned_bits));
++}
++
++static inline unsigned long
++vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
++{
++	return
++	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
++	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
++	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
++			vcpu->arch.cr4_guest_owned_bits));
++}
++
++static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
++				       struct vmcs12 *vmcs12)
++{
++	u32 idt_vectoring;
++	unsigned int nr;
++
++	if (vcpu->arch.exception.injected) {
++		nr = vcpu->arch.exception.nr;
++		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
++
++		if (kvm_exception_is_soft(nr)) {
++			vmcs12->vm_exit_instruction_len =
++				vcpu->arch.event_exit_inst_len;
++			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
++		} else
++			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
++
++		if (vcpu->arch.exception.has_error_code) {
++			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
++			vmcs12->idt_vectoring_error_code =
++				vcpu->arch.exception.error_code;
++		}
++
++		vmcs12->idt_vectoring_info_field = idt_vectoring;
++	} else if (vcpu->arch.nmi_injected) {
++		vmcs12->idt_vectoring_info_field =
++			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
++	} else if (vcpu->arch.interrupt.injected) {
++		nr = vcpu->arch.interrupt.nr;
++		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
++
++		if (vcpu->arch.interrupt.soft) {
++			idt_vectoring |= INTR_TYPE_SOFT_INTR;
++			vmcs12->vm_entry_instruction_len =
++				vcpu->arch.event_exit_inst_len;
++		} else
++			idt_vectoring |= INTR_TYPE_EXT_INTR;
++
++		vmcs12->idt_vectoring_info_field = idt_vectoring;
++	}
++}
++
++static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	unsigned long exit_qual;
++	bool block_nested_events =
++	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
++
++	if (vcpu->arch.exception.pending &&
++		nested_vmx_check_exception(vcpu, &exit_qual)) {
++		if (block_nested_events)
++			return -EBUSY;
++		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
++		return 0;
++	}
++
++	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
++	    vmx->nested.preemption_timer_expired) {
++		if (block_nested_events)
++			return -EBUSY;
++		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
++		return 0;
++	}
++
++	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
++		if (block_nested_events)
++			return -EBUSY;
++		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
++				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
++				  INTR_INFO_VALID_MASK, 0);
++		/*
++		 * The NMI-triggered VM exit counts as injection:
++		 * clear this one and block further NMIs.
++		 */
++		vcpu->arch.nmi_pending = 0;
++		vmx_set_nmi_mask(vcpu, true);
++		return 0;
++	}
++
++	if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
++		if (block_nested_events)
++			return -EBUSY;
++		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
++		return 0;
++	}
++
++	vmx_complete_nested_posted_interrupt(vcpu);
++	return 0;
++}
++
++static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
++{
++	to_vmx(vcpu)->req_immediate_exit = true;
++}
++
++static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
++{
++	ktime_t remaining =
++		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
++	u64 value;
++
++	if (ktime_to_ns(remaining) <= 0)
++		return 0;
++
++	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
++	do_div(value, 1000000);
++	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
++}
++
++/*
++ * Update the guest state fields of vmcs12 to reflect changes that
++ * occurred while L2 was running. (The "IA-32e mode guest" bit of the
++ * VM-entry controls is also updated, since this is really a guest
++ * state bit.)
++ */
++static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
++{
++	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
++	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
++
++	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
++	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
++	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
++
++	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
++	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
++	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
++	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
++	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
++	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
++	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
++	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
++	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
++	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
++	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
++	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
++	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
++	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
++	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
++	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
++	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
++	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
++	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
++	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
++	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
++	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
++	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
++	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
++	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
++	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
++	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
++	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
++	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
++	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
++	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
++	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
++	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
++	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
++	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
++	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
++
++	vmcs12->guest_interruptibility_info =
++		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
++	vmcs12->guest_pending_dbg_exceptions =
++		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
++	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
++		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
++	else
++		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
++
++	if (nested_cpu_has_preemption_timer(vmcs12)) {
++		if (vmcs12->vm_exit_controls &
++		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
++			vmcs12->vmx_preemption_timer_value =
++				vmx_get_preemption_timer_value(vcpu);
++		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
++	}
++
++	/*
++	 * In some cases (usually, nested EPT), L2 is allowed to change its
++	 * own CR3 without exiting. If it has changed it, we must keep it.
++	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
++	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
++	 *
++	 * Additionally, restore L2's PDPTR to vmcs12.
++	 */
++	if (enable_ept) {
++		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
++		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
++		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
++		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
++		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
++	}
++
++	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
++
++	if (nested_cpu_has_vid(vmcs12))
++		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
++
++	vmcs12->vm_entry_controls =
++		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
++		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
++
++	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
++		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
++		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
++	}
++
++	/* TODO: These cannot have changed unless we have MSR bitmaps and
++	 * the relevant bit asks not to trap the change */
++	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
++		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
++	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
++		vmcs12->guest_ia32_efer = vcpu->arch.efer;
++	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
++	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
++	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
++	if (kvm_mpx_supported())
++		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
++}
++
++/*
++ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
++ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
++ * and this function updates it to reflect the changes to the guest state while
++ * L2 was running (and perhaps made some exits which were handled directly by L0
++ * without going back to L1), and to reflect the exit reason.
++ * Note that we do not have to copy here all VMCS fields, just those that
++ * could have changed by the L2 guest or the exit - i.e., the guest-state and
++ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
++ * which already writes to vmcs12 directly.
++ */
++static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
++			   u32 exit_reason, u32 exit_intr_info,
++			   unsigned long exit_qualification)
++{
++	/* update guest state fields: */
++	sync_vmcs12(vcpu, vmcs12);
++
++	/* update exit information fields: */
++
++	vmcs12->vm_exit_reason = exit_reason;
++	vmcs12->exit_qualification = exit_qualification;
++	vmcs12->vm_exit_intr_info = exit_intr_info;
++
++	vmcs12->idt_vectoring_info_field = 0;
++	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++
++	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
++		vmcs12->launch_state = 1;
++
++		/* vm_entry_intr_info_field is cleared on exit. Emulate this
++		 * instead of reading the real value. */
++		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
++
++		/*
++		 * Transfer the event that L0 or L1 may wanted to inject into
++		 * L2 to IDT_VECTORING_INFO_FIELD.
++		 */
++		vmcs12_save_pending_event(vcpu, vmcs12);
++	}
++}
++
++/*
++ * A part of what we need to when the nested L2 guest exits and we want to
++ * run its L1 parent, is to reset L1's guest state to the host state specified
++ * in vmcs12.
++ * This function is to be called not only on normal nested exit, but also on
++ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
++ * Failures During or After Loading Guest State").
++ * This function should be called when the active VMCS is L1's (vmcs01).
++ */
++static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
++				   struct vmcs12 *vmcs12)
++{
++	struct kvm_segment seg;
++	u32 entry_failure_code;
++
++	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
++		vcpu->arch.efer = vmcs12->host_ia32_efer;
++	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
++		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
++	else
++		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
++	vmx_set_efer(vcpu, vcpu->arch.efer);
++
++	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
++	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
++	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
++	/*
++	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
++	 * actually changed, because vmx_set_cr0 refers to efer set above.
++	 *
++	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
++	 * (KVM doesn't change it);
++	 */
++	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
++	vmx_set_cr0(vcpu, vmcs12->host_cr0);
++
++	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
++	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
++	vmx_set_cr4(vcpu, vmcs12->host_cr4);
++
++	nested_ept_uninit_mmu_context(vcpu);
++
++	/*
++	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
++	 * couldn't have changed.
++	 */
++	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
++		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
++
++	if (!enable_ept)
++		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
++
++	/*
++	 * If vmcs01 don't use VPID, CPU flushes TLB on every
++	 * VMEntry/VMExit. Thus, no need to flush TLB.
++	 *
++	 * If vmcs12 uses VPID, TLB entries populated by L2 are
++	 * tagged with vmx->nested.vpid02 while L1 entries are tagged
++	 * with vmx->vpid. Thus, no need to flush TLB.
++	 *
++	 * Therefore, flush TLB only in case vmcs01 uses VPID and
++	 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
++	 * are both tagged with vmx->vpid.
++	 */
++	if (enable_vpid &&
++	    !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
++		vmx_flush_tlb(vcpu, true);
++	}
++
++	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
++	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
++	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
++	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
++	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
++	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
++	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
++
++	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
++	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
++		vmcs_write64(GUEST_BNDCFGS, 0);
++
++	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
++		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
++		vcpu->arch.pat = vmcs12->host_ia32_pat;
++	}
++	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
++		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
++			vmcs12->host_ia32_perf_global_ctrl);
++
++	/* Set L1 segment info according to Intel SDM
++	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
++	seg = (struct kvm_segment) {
++		.base = 0,
++		.limit = 0xFFFFFFFF,
++		.selector = vmcs12->host_cs_selector,
++		.type = 11,
++		.present = 1,
++		.s = 1,
++		.g = 1
++	};
++	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
++		seg.l = 1;
++	else
++		seg.db = 1;
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
++	seg = (struct kvm_segment) {
++		.base = 0,
++		.limit = 0xFFFFFFFF,
++		.type = 3,
++		.present = 1,
++		.s = 1,
++		.db = 1,
++		.g = 1
++	};
++	seg.selector = vmcs12->host_ds_selector;
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
++	seg.selector = vmcs12->host_es_selector;
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
++	seg.selector = vmcs12->host_ss_selector;
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
++	seg.selector = vmcs12->host_fs_selector;
++	seg.base = vmcs12->host_fs_base;
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
++	seg.selector = vmcs12->host_gs_selector;
++	seg.base = vmcs12->host_gs_base;
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
++	seg = (struct kvm_segment) {
++		.base = vmcs12->host_tr_base,
++		.limit = 0x67,
++		.selector = vmcs12->host_tr_selector,
++		.type = 11,
++		.present = 1
++	};
++	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
++
++	kvm_set_dr(vcpu, 7, 0x400);
++	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
++
++	if (cpu_has_vmx_msr_bitmap())
++		vmx_update_msr_bitmap(vcpu);
++
++	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
++				vmcs12->vm_exit_msr_load_count))
++		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
++}
++
++static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
++{
++	struct shared_msr_entry *efer_msr;
++	unsigned int i;
++
++	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
++		return vmcs_read64(GUEST_IA32_EFER);
++
++	if (cpu_has_load_ia32_efer)
++		return host_efer;
++
++	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
++		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
++			return vmx->msr_autoload.guest.val[i].value;
++	}
++
++	efer_msr = find_msr_entry(vmx, MSR_EFER);
++	if (efer_msr)
++		return efer_msr->data;
++
++	return host_efer;
++}
++
++static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmx_msr_entry g, h;
++	struct msr_data msr;
++	gpa_t gpa;
++	u32 i, j;
++
++	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
++
++	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
++		/*
++		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
++		 * as vmcs01.GUEST_DR7 contains a userspace defined value
++		 * and vcpu->arch.dr7 is not squirreled away before the
++		 * nested VMENTER (not worth adding a variable in nested_vmx).
++		 */
++		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
++			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
++		else
++			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
++	}
++
++	/*
++	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
++	 * handle a variety of side effects to KVM's software model.
++	 */
++	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
++
++	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
++	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
++
++	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
++	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
++
++	nested_ept_uninit_mmu_context(vcpu);
++	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
++	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
++
++	/*
++	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
++	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
++	 * VMFail, like everything else we just need to ensure our
++	 * software model is up-to-date.
++	 */
++	ept_save_pdptrs(vcpu);
++
++	kvm_mmu_reset_context(vcpu);
++
++	if (cpu_has_vmx_msr_bitmap())
++		vmx_update_msr_bitmap(vcpu);
++
++	/*
++	 * This nasty bit of open coding is a compromise between blindly
++	 * loading L1's MSRs using the exit load lists (incorrect emulation
++	 * of VMFail), leaving the nested VM's MSRs in the software model
++	 * (incorrect behavior) and snapshotting the modified MSRs (too
++	 * expensive since the lists are unbound by hardware).  For each
++	 * MSR that was (prematurely) loaded from the nested VMEntry load
++	 * list, reload it from the exit load list if it exists and differs
++	 * from the guest value.  The intent is to stuff host state as
++	 * silently as possible, not to fully process the exit load list.
++	 */
++	msr.host_initiated = false;
++	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
++		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
++		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
++			pr_debug_ratelimited(
++				"%s read MSR index failed (%u, 0x%08llx)\n",
++				__func__, i, gpa);
++			goto vmabort;
++		}
++
++		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
++			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
++			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
++				pr_debug_ratelimited(
++					"%s read MSR failed (%u, 0x%08llx)\n",
++					__func__, j, gpa);
++				goto vmabort;
++			}
++			if (h.index != g.index)
++				continue;
++			if (h.value == g.value)
++				break;
++
++			if (nested_vmx_load_msr_check(vcpu, &h)) {
++				pr_debug_ratelimited(
++					"%s check failed (%u, 0x%x, 0x%x)\n",
++					__func__, j, h.index, h.reserved);
++				goto vmabort;
++			}
++
++			msr.index = h.index;
++			msr.data = h.value;
++			if (kvm_set_msr(vcpu, &msr)) {
++				pr_debug_ratelimited(
++					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
++					__func__, j, h.index, h.value);
++				goto vmabort;
++			}
++		}
++	}
++
++	return;
++
++vmabort:
++	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
++}
++
++/*
++ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
++ * and modify vmcs12 to make it see what it would expect to see there if
++ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
++ */
++static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
++			      u32 exit_intr_info,
++			      unsigned long exit_qualification)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++	/* trying to cancel vmlaunch/vmresume is a bug */
++	WARN_ON_ONCE(vmx->nested.nested_run_pending);
++
++	/*
++	 * The only expected VM-instruction error is "VM entry with
++	 * invalid control field(s)." Anything else indicates a
++	 * problem with L0.
++	 */
++	WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
++				   VMXERR_ENTRY_INVALID_CONTROL_FIELD));
++
++	leave_guest_mode(vcpu);
++
++	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
++		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
++
++	if (likely(!vmx->fail)) {
++		if (exit_reason == -1)
++			sync_vmcs12(vcpu, vmcs12);
++		else
++			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
++				       exit_qualification);
++
++		/*
++		 * Must happen outside of sync_vmcs12() as it will
++		 * also be used to capture vmcs12 cache as part of
++		 * capturing nVMX state for snapshot (migration).
++		 *
++		 * Otherwise, this flush will dirty guest memory at a
++		 * point it is already assumed by user-space to be
++		 * immutable.
++		 */
++		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
++
++		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
++					 vmcs12->vm_exit_msr_store_count))
++			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
++	}
++
++	/*
++	 * Drop events/exceptions that were queued for re-injection to L2
++	 * (picked up via vmx_complete_interrupts()), as well as exceptions
++	 * that were pending for L2.  Note, this must NOT be hoisted above
++	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
++	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
++	 */
++	vcpu->arch.nmi_injected = false;
++	kvm_clear_exception_queue(vcpu);
++	kvm_clear_interrupt_queue(vcpu);
++
++	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
++	vm_entry_controls_reset_shadow(vmx);
++	vm_exit_controls_reset_shadow(vmx);
++	vmx_segment_cache_clear(vmx);
++
++	/* Update any VMCS fields that might have changed while L2 ran */
++	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
++	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
++	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
++
++	if (kvm_has_tsc_control)
++		decache_tsc_multiplier(vmx);
++
++	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
++		vmx->nested.change_vmcs01_virtual_apic_mode = false;
++		vmx_set_virtual_apic_mode(vcpu);
++	} else if (!nested_cpu_has_ept(vmcs12) &&
++		   nested_cpu_has2(vmcs12,
++				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
++		vmx_flush_tlb(vcpu, true);
++	}
++
++	/* This is needed for same reason as it was needed in prepare_vmcs02 */
++	vmx->host_rsp = 0;
++
++	/* Unpin physical memory we referred to in vmcs02 */
++	if (vmx->nested.apic_access_page) {
++		kvm_release_page_dirty(vmx->nested.apic_access_page);
++		vmx->nested.apic_access_page = NULL;
++	}
++	if (vmx->nested.virtual_apic_page) {
++		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
++		vmx->nested.virtual_apic_page = NULL;
++	}
++	if (vmx->nested.pi_desc_page) {
++		kunmap(vmx->nested.pi_desc_page);
++		kvm_release_page_dirty(vmx->nested.pi_desc_page);
++		vmx->nested.pi_desc_page = NULL;
++		vmx->nested.pi_desc = NULL;
++	}
++
++	/*
++	 * We are now running in L2, mmu_notifier will force to reload the
++	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
++	 */
++	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
++
++	if (enable_shadow_vmcs && exit_reason != -1)
++		vmx->nested.sync_shadow_vmcs = true;
++
++	/* in case we halted in L2 */
++	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
++
++	if (likely(!vmx->fail)) {
++		if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
++		    nested_exit_intr_ack_set(vcpu)) {
++			int irq = kvm_cpu_get_interrupt(vcpu);
++			WARN_ON(irq < 0);
++			vmcs12->vm_exit_intr_info = irq |
++				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
++		}
++
++		if (exit_reason != -1)
++			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
++						       vmcs12->exit_qualification,
++						       vmcs12->idt_vectoring_info_field,
++						       vmcs12->vm_exit_intr_info,
++						       vmcs12->vm_exit_intr_error_code,
++						       KVM_ISA_VMX);
++
++		load_vmcs12_host_state(vcpu, vmcs12);
++
++		return;
++	}
++	
++	/*
++	 * After an early L2 VM-entry failure, we're now back
++	 * in L1 which thinks it just finished a VMLAUNCH or
++	 * VMRESUME instruction, so we need to set the failure
++	 * flag and the VM-instruction error field of the VMCS
++	 * accordingly.
++	 */
++	nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
++
++	/*
++	 * Restore L1's host state to KVM's software model.  We're here
++	 * because a consistency check was caught by hardware, which
++	 * means some amount of guest state has been propagated to KVM's
++	 * model and needs to be unwound to the host's state.
++	 */
++	nested_vmx_restore_host_state(vcpu);
++
++	/*
++	 * The emulated instruction was already skipped in
++	 * nested_vmx_run, but the updated RIP was never
++	 * written back to the vmcs01.
++	 */
++	skip_emulated_instruction(vcpu);
++	vmx->fail = 0;
++}
++
++/*
++ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
++ */
++static void vmx_leave_nested(struct kvm_vcpu *vcpu)
++{
++	if (is_guest_mode(vcpu)) {
++		to_vmx(vcpu)->nested.nested_run_pending = 0;
++		nested_vmx_vmexit(vcpu, -1, 0, 0);
++	}
++	free_nested(to_vmx(vcpu));
++}
++
++/*
++ * L1's failure to enter L2 is a subset of a normal exit, as explained in
++ * 23.7 "VM-entry failures during or after loading guest state" (this also
++ * lists the acceptable exit-reason and exit-qualification parameters).
++ * It should only be called before L2 actually succeeded to run, and when
++ * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
++ */
++static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
++			struct vmcs12 *vmcs12,
++			u32 reason, unsigned long qualification)
++{
++	load_vmcs12_host_state(vcpu, vmcs12);
++	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
++	vmcs12->exit_qualification = qualification;
++	nested_vmx_succeed(vcpu);
++	if (enable_shadow_vmcs)
++		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
++}
++
++static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
++				  struct x86_instruction_info *info)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	unsigned short port;
++	bool intercept;
++	int size;
++
++	if (info->intercept == x86_intercept_in ||
++	    info->intercept == x86_intercept_ins) {
++		port = info->src_val;
++		size = info->dst_bytes;
++	} else {
++		port = info->dst_val;
++		size = info->src_bytes;
++	}
++
++	/*
++	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
++	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
++	 * control.
++	 *
++	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
++	 */
++	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
++		intercept = nested_cpu_has(vmcs12,
++					   CPU_BASED_UNCOND_IO_EXITING);
++	else
++		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
++
++	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
++	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
++}
++
++static int vmx_check_intercept(struct kvm_vcpu *vcpu,
++			       struct x86_instruction_info *info,
++			       enum x86_intercept_stage stage)
++{
++	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
++
++	switch (info->intercept) {
++	/*
++	 * RDPID causes #UD if disabled through secondary execution controls.
++	 * Because it is marked as EmulateOnUD, we need to intercept it here.
++	 */
++	case x86_intercept_rdtscp:
++		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
++			ctxt->exception.vector = UD_VECTOR;
++			ctxt->exception.error_code_valid = false;
++			return X86EMUL_PROPAGATE_FAULT;
++		}
++		break;
++
++	case x86_intercept_in:
++	case x86_intercept_ins:
++	case x86_intercept_out:
++	case x86_intercept_outs:
++		return vmx_check_intercept_io(vcpu, info);
++
++	case x86_intercept_lgdt:
++	case x86_intercept_lidt:
++	case x86_intercept_lldt:
++	case x86_intercept_ltr:
++	case x86_intercept_sgdt:
++	case x86_intercept_sidt:
++	case x86_intercept_sldt:
++	case x86_intercept_str:
++		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
++			return X86EMUL_CONTINUE;
++
++		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
++		break;
++
++	/* TODO: check more intercepts... */
++	default:
++		break;
++	}
++
++	return X86EMUL_UNHANDLEABLE;
++}
++
++#ifdef CONFIG_X86_64
++/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
++static inline int u64_shl_div_u64(u64 a, unsigned int shift,
++				  u64 divisor, u64 *result)
++{
++	u64 low = a << shift, high = a >> (64 - shift);
++
++	/* To avoid the overflow on divq */
++	if (high >= divisor)
++		return 1;
++
++	/* Low hold the result, high hold rem which is discarded */
++	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
++	    "rm" (divisor), "0" (low), "1" (high));
++	*result = low;
++
++	return 0;
++}
++
++static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
++{
++	struct vcpu_vmx *vmx;
++	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
++
++	if (kvm_mwait_in_guest(vcpu->kvm))
++		return -EOPNOTSUPP;
++
++	vmx = to_vmx(vcpu);
++	tscl = rdtsc();
++	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
++	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
++	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
++
++	if (delta_tsc > lapic_timer_advance_cycles)
++		delta_tsc -= lapic_timer_advance_cycles;
++	else
++		delta_tsc = 0;
++
++	/* Convert to host delta tsc if tsc scaling is enabled */
++	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
++			u64_shl_div_u64(delta_tsc,
++				kvm_tsc_scaling_ratio_frac_bits,
++				vcpu->arch.tsc_scaling_ratio,
++				&delta_tsc))
++		return -ERANGE;
++
++	/*
++	 * If the delta tsc can't fit in the 32 bit after the multi shift,
++	 * we can't use the preemption timer.
++	 * It's possible that it fits on later vmentries, but checking
++	 * on every vmentry is costly so we just use an hrtimer.
++	 */
++	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
++		return -ERANGE;
++
++	vmx->hv_deadline_tsc = tscl + delta_tsc;
++	return delta_tsc == 0;
++}
++
++static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
++{
++	to_vmx(vcpu)->hv_deadline_tsc = -1;
++}
++#endif
++
++static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
++{
++	if (!kvm_pause_in_guest(vcpu->kvm))
++		shrink_ple_window(vcpu);
++}
++
++static void vmx_slot_enable_log_dirty(struct kvm *kvm,
++				     struct kvm_memory_slot *slot)
++{
++	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
++	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
++}
++
++static void vmx_slot_disable_log_dirty(struct kvm *kvm,
++				       struct kvm_memory_slot *slot)
++{
++	kvm_mmu_slot_set_dirty(kvm, slot);
++}
++
++static void vmx_flush_log_dirty(struct kvm *kvm)
++{
++	kvm_flush_pml_buffers(kvm);
++}
++
++static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
++{
++	struct vmcs12 *vmcs12;
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct page *page = NULL;
++	u64 *pml_address;
++
++	if (is_guest_mode(vcpu)) {
++		WARN_ON_ONCE(vmx->nested.pml_full);
++
++		/*
++		 * Check if PML is enabled for the nested guest.
++		 * Whether eptp bit 6 is set is already checked
++		 * as part of A/D emulation.
++		 */
++		vmcs12 = get_vmcs12(vcpu);
++		if (!nested_cpu_has_pml(vmcs12))
++			return 0;
++
++		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
++			vmx->nested.pml_full = true;
++			return 1;
++		}
++
++		gpa &= ~0xFFFull;
++
++		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
++		if (is_error_page(page))
++			return 0;
++
++		pml_address = kmap(page);
++		pml_address[vmcs12->guest_pml_index--] = gpa;
++		kunmap(page);
++		kvm_release_page_clean(page);
++	}
++
++	return 0;
++}
++
++static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
++					   struct kvm_memory_slot *memslot,
++					   gfn_t offset, unsigned long mask)
++{
++	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
++}
++
++static void __pi_post_block(struct kvm_vcpu *vcpu)
++{
++	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++	struct pi_desc old, new;
++	unsigned int dest;
++
++	do {
++		old.control = new.control = pi_desc->control;
++		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
++		     "Wakeup handler not enabled while the VCPU is blocked\n");
++
++		dest = cpu_physical_id(vcpu->cpu);
++
++		if (x2apic_enabled())
++			new.ndst = dest;
++		else
++			new.ndst = (dest << 8) & 0xFF00;
++
++		/* set 'NV' to 'notification vector' */
++		new.nv = POSTED_INTR_VECTOR;
++	} while (cmpxchg64(&pi_desc->control, old.control,
++			   new.control) != old.control);
++
++	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
++		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++		list_del(&vcpu->blocked_vcpu_list);
++		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++		vcpu->pre_pcpu = -1;
++	}
++}
++
++/*
++ * This routine does the following things for vCPU which is going
++ * to be blocked if VT-d PI is enabled.
++ * - Store the vCPU to the wakeup list, so when interrupts happen
++ *   we can find the right vCPU to wake up.
++ * - Change the Posted-interrupt descriptor as below:
++ *      'NDST' <-- vcpu->pre_pcpu
++ *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
++ * - If 'ON' is set during this process, which means at least one
++ *   interrupt is posted for this vCPU, we cannot block it, in
++ *   this case, return 1, otherwise, return 0.
++ *
++ */
++static int pi_pre_block(struct kvm_vcpu *vcpu)
++{
++	unsigned int dest;
++	struct pi_desc old, new;
++	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
++		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
++		!kvm_vcpu_apicv_active(vcpu))
++		return 0;
++
++	WARN_ON(irqs_disabled());
++	local_irq_disable();
++	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
++		vcpu->pre_pcpu = vcpu->cpu;
++		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++		list_add_tail(&vcpu->blocked_vcpu_list,
++			      &per_cpu(blocked_vcpu_on_cpu,
++				       vcpu->pre_pcpu));
++		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++	}
++
++	do {
++		old.control = new.control = pi_desc->control;
++
++		WARN((pi_desc->sn == 1),
++		     "Warning: SN field of posted-interrupts "
++		     "is set before blocking\n");
++
++		/*
++		 * Since vCPU can be preempted during this process,
++		 * vcpu->cpu could be different with pre_pcpu, we
++		 * need to set pre_pcpu as the destination of wakeup
++		 * notification event, then we can find the right vCPU
++		 * to wakeup in wakeup handler if interrupts happen
++		 * when the vCPU is in blocked state.
++		 */
++		dest = cpu_physical_id(vcpu->pre_pcpu);
++
++		if (x2apic_enabled())
++			new.ndst = dest;
++		else
++			new.ndst = (dest << 8) & 0xFF00;
++
++		/* set 'NV' to 'wakeup vector' */
++		new.nv = POSTED_INTR_WAKEUP_VECTOR;
++	} while (cmpxchg64(&pi_desc->control, old.control,
++			   new.control) != old.control);
++
++	/* We should not block the vCPU if an interrupt is posted for it.  */
++	if (pi_test_on(pi_desc) == 1)
++		__pi_post_block(vcpu);
++
++	local_irq_enable();
++	return (vcpu->pre_pcpu == -1);
++}
++
++static int vmx_pre_block(struct kvm_vcpu *vcpu)
++{
++	if (pi_pre_block(vcpu))
++		return 1;
++
++	if (kvm_lapic_hv_timer_in_use(vcpu))
++		kvm_lapic_switch_to_sw_timer(vcpu);
++
++	return 0;
++}
++
++static void pi_post_block(struct kvm_vcpu *vcpu)
++{
++	if (vcpu->pre_pcpu == -1)
++		return;
++
++	WARN_ON(irqs_disabled());
++	local_irq_disable();
++	__pi_post_block(vcpu);
++	local_irq_enable();
++}
++
++static void vmx_post_block(struct kvm_vcpu *vcpu)
++{
++	if (kvm_x86_ops->set_hv_timer)
++		kvm_lapic_switch_to_hv_timer(vcpu);
++
++	pi_post_block(vcpu);
++}
++
++/*
++ * vmx_update_pi_irte - set IRTE for Posted-Interrupts
++ *
++ * @kvm: kvm
++ * @host_irq: host irq of the interrupt
++ * @guest_irq: gsi of the interrupt
++ * @set: set or unset PI
++ * returns 0 on success, < 0 on failure
++ */
++static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
++			      uint32_t guest_irq, bool set)
++{
++	struct kvm_kernel_irq_routing_entry *e;
++	struct kvm_irq_routing_table *irq_rt;
++	struct kvm_lapic_irq irq;
++	struct kvm_vcpu *vcpu;
++	struct vcpu_data vcpu_info;
++	int idx, ret = 0;
++
++	if (!kvm_arch_has_assigned_device(kvm) ||
++		!irq_remapping_cap(IRQ_POSTING_CAP) ||
++		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
++		return 0;
++
++	idx = srcu_read_lock(&kvm->irq_srcu);
++	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
++	if (guest_irq >= irq_rt->nr_rt_entries ||
++	    hlist_empty(&irq_rt->map[guest_irq])) {
++		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
++			     guest_irq, irq_rt->nr_rt_entries);
++		goto out;
++	}
++
++	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
++		if (e->type != KVM_IRQ_ROUTING_MSI)
++			continue;
++		/*
++		 * VT-d PI cannot support posting multicast/broadcast
++		 * interrupts to a vCPU, we still use interrupt remapping
++		 * for these kind of interrupts.
++		 *
++		 * For lowest-priority interrupts, we only support
++		 * those with single CPU as the destination, e.g. user
++		 * configures the interrupts via /proc/irq or uses
++		 * irqbalance to make the interrupts single-CPU.
++		 *
++		 * We will support full lowest-priority interrupt later.
++		 */
++
++		kvm_set_msi_irq(kvm, e, &irq);
++		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
++			/*
++			 * Make sure the IRTE is in remapped mode if
++			 * we don't handle it in posted mode.
++			 */
++			ret = irq_set_vcpu_affinity(host_irq, NULL);
++			if (ret < 0) {
++				printk(KERN_INFO
++				   "failed to back to remapped mode, irq: %u\n",
++				   host_irq);
++				goto out;
++			}
++
++			continue;
++		}
++
++		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
++		vcpu_info.vector = irq.vector;
++
++		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
++				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
++
++		if (set)
++			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
++		else
++			ret = irq_set_vcpu_affinity(host_irq, NULL);
++
++		if (ret < 0) {
++			printk(KERN_INFO "%s: failed to update PI IRTE\n",
++					__func__);
++			goto out;
++		}
++	}
++
++	ret = 0;
++out:
++	srcu_read_unlock(&kvm->irq_srcu, idx);
++	return ret;
++}
++
++static void vmx_setup_mce(struct kvm_vcpu *vcpu)
++{
++	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
++		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
++			FEATURE_CONTROL_LMCE;
++	else
++		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
++			~FEATURE_CONTROL_LMCE;
++}
++
++static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
++{
++	/* we need a nested vmexit to enter SMM, postpone if run is pending */
++	if (to_vmx(vcpu)->nested.nested_run_pending)
++		return 0;
++	return 1;
++}
++
++static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
++	if (vmx->nested.smm.guest_mode)
++		nested_vmx_vmexit(vcpu, -1, 0, 0);
++
++	vmx->nested.smm.vmxon = vmx->nested.vmxon;
++	vmx->nested.vmxon = false;
++	vmx_clear_hlt(vcpu);
++	return 0;
++}
++
++static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	int ret;
++
++	if (vmx->nested.smm.vmxon) {
++		vmx->nested.vmxon = true;
++		vmx->nested.smm.vmxon = false;
++	}
++
++	if (vmx->nested.smm.guest_mode) {
++		vcpu->arch.hflags &= ~HF_SMM_MASK;
++		ret = enter_vmx_non_root_mode(vcpu, NULL);
++		vcpu->arch.hflags |= HF_SMM_MASK;
++		if (ret)
++			return ret;
++
++		vmx->nested.smm.guest_mode = false;
++	}
++	return 0;
++}
++
++static int enable_smi_window(struct kvm_vcpu *vcpu)
++{
++	return 0;
++}
++
++static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
++				struct kvm_nested_state __user *user_kvm_nested_state,
++				u32 user_data_size)
++{
++	struct vcpu_vmx *vmx;
++	struct vmcs12 *vmcs12;
++	struct kvm_nested_state kvm_state = {
++		.flags = 0,
++		.format = 0,
++		.size = sizeof(kvm_state),
++		.vmx.vmxon_pa = -1ull,
++		.vmx.vmcs_pa = -1ull,
++	};
++
++	if (!vcpu)
++		return kvm_state.size + 2 * VMCS12_SIZE;
++
++	vmx = to_vmx(vcpu);
++	vmcs12 = get_vmcs12(vcpu);
++	if (nested_vmx_allowed(vcpu) &&
++	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
++		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
++		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
++
++		if (vmx->nested.current_vmptr != -1ull) {
++			kvm_state.size += VMCS12_SIZE;
++
++			if (is_guest_mode(vcpu) &&
++			    nested_cpu_has_shadow_vmcs(vmcs12) &&
++			    vmcs12->vmcs_link_pointer != -1ull)
++				kvm_state.size += VMCS12_SIZE;
++		}
++
++		if (vmx->nested.smm.vmxon)
++			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
++
++		if (vmx->nested.smm.guest_mode)
++			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
++
++		if (is_guest_mode(vcpu)) {
++			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
++
++			if (vmx->nested.nested_run_pending)
++				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
++		}
++	}
++
++	if (user_data_size < kvm_state.size)
++		goto out;
++
++	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
++		return -EFAULT;
++
++	if (vmx->nested.current_vmptr == -1ull)
++		goto out;
++
++	/*
++	 * When running L2, the authoritative vmcs12 state is in the
++	 * vmcs02. When running L1, the authoritative vmcs12 state is
++	 * in the shadow vmcs linked to vmcs01, unless
++	 * sync_shadow_vmcs is set, in which case, the authoritative
++	 * vmcs12 state is in the vmcs12 already.
++	 */
++	if (is_guest_mode(vcpu))
++		sync_vmcs12(vcpu, vmcs12);
++	else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs)
++		copy_shadow_to_vmcs12(vmx);
++
++	/*
++	 * Copy over the full allocated size of vmcs12 rather than just the size
++	 * of the struct.
++	 */
++	if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
++		return -EFAULT;
++
++	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
++	    vmcs12->vmcs_link_pointer != -1ull) {
++		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
++				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
++			return -EFAULT;
++	}
++
++out:
++	return kvm_state.size;
++}
++
++static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
++				struct kvm_nested_state __user *user_kvm_nested_state,
++				struct kvm_nested_state *kvm_state)
++{
++	struct vcpu_vmx *vmx = to_vmx(vcpu);
++	struct vmcs12 *vmcs12;
++	u32 exit_qual;
++	int ret;
++
++	if (kvm_state->format != 0)
++		return -EINVAL;
++
++	if (!nested_vmx_allowed(vcpu))
++		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
++
++	if (kvm_state->vmx.vmxon_pa == -1ull) {
++		if (kvm_state->vmx.smm.flags)
++			return -EINVAL;
++
++		if (kvm_state->vmx.vmcs_pa != -1ull)
++			return -EINVAL;
++
++		vmx_leave_nested(vcpu);
++		return 0;
++	}
++
++	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
++		return -EINVAL;
++
++	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
++	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
++		return -EINVAL;
++
++	if (kvm_state->vmx.smm.flags &
++	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
++		return -EINVAL;
++
++	/*
++	 * SMM temporarily disables VMX, so we cannot be in guest mode,
++	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
++	 * must be zero.
++	 */
++	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
++		return -EINVAL;
++
++	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
++	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
++		return -EINVAL;
++
++	vmx_leave_nested(vcpu);
++	if (kvm_state->vmx.vmxon_pa == -1ull)
++		return 0;
++
++	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
++	ret = enter_vmx_operation(vcpu);
++	if (ret)
++		return ret;
++
++	/* Empty 'VMXON' state is permitted */
++	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
++		return 0;
++
++	if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
++	    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
++		return -EINVAL;
++
++	set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
++
++	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
++		vmx->nested.smm.vmxon = true;
++		vmx->nested.vmxon = false;
++
++		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
++			vmx->nested.smm.guest_mode = true;
++	}
++
++	vmcs12 = get_vmcs12(vcpu);
++	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
++		return -EFAULT;
++
++	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
++		return -EINVAL;
++
++	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
++		return 0;
++
++	vmx->nested.nested_run_pending =
++		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
++
++	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
++	    vmcs12->vmcs_link_pointer != -1ull) {
++		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
++		if (kvm_state->size < sizeof(*kvm_state) + 2 * sizeof(*vmcs12))
++			return -EINVAL;
++
++		if (copy_from_user(shadow_vmcs12,
++				   user_kvm_nested_state->data + VMCS12_SIZE,
++				   sizeof(*vmcs12)))
++			return -EFAULT;
++
++		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
++		    !shadow_vmcs12->hdr.shadow_vmcs)
++			return -EINVAL;
++	}
++
++	if (check_vmentry_prereqs(vcpu, vmcs12) ||
++	    check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
++		return -EINVAL;
++
++	vmx->nested.dirty_vmcs12 = true;
++	ret = enter_vmx_non_root_mode(vcpu, NULL);
++	if (ret)
++		return -EINVAL;
++
++	return 0;
++}
++
++static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
++	.cpu_has_kvm_support = cpu_has_kvm_support,
++	.disabled_by_bios = vmx_disabled_by_bios,
++	.hardware_setup = hardware_setup,
++	.hardware_unsetup = hardware_unsetup,
++	.check_processor_compatibility = vmx_check_processor_compat,
++	.hardware_enable = hardware_enable,
++	.hardware_disable = hardware_disable,
++	.cpu_has_accelerated_tpr = report_flexpriority,
++	.has_emulated_msr = vmx_has_emulated_msr,
++
++	.vm_init = vmx_vm_init,
++	.vm_alloc = vmx_vm_alloc,
++	.vm_free = vmx_vm_free,
++
++	.vcpu_create = vmx_create_vcpu,
++	.vcpu_free = vmx_free_vcpu,
++	.vcpu_reset = vmx_vcpu_reset,
++
++	.prepare_guest_switch = vmx_prepare_switch_to_guest,
++	.vcpu_load = vmx_vcpu_load,
++	.vcpu_put = vmx_vcpu_put,
++
++	.update_bp_intercept = update_exception_bitmap,
++	.get_msr_feature = vmx_get_msr_feature,
++	.get_msr = vmx_get_msr,
++	.set_msr = vmx_set_msr,
++	.get_segment_base = vmx_get_segment_base,
++	.get_segment = vmx_get_segment,
++	.set_segment = vmx_set_segment,
++	.get_cpl = vmx_get_cpl,
++	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
++	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
++	.decache_cr3 = vmx_decache_cr3,
++	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
++	.set_cr0 = vmx_set_cr0,
++	.set_cr3 = vmx_set_cr3,
++	.set_cr4 = vmx_set_cr4,
++	.set_efer = vmx_set_efer,
++	.get_idt = vmx_get_idt,
++	.set_idt = vmx_set_idt,
++	.get_gdt = vmx_get_gdt,
++	.set_gdt = vmx_set_gdt,
++	.get_dr6 = vmx_get_dr6,
++	.set_dr6 = vmx_set_dr6,
++	.set_dr7 = vmx_set_dr7,
++	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
++	.cache_reg = vmx_cache_reg,
++	.get_rflags = vmx_get_rflags,
++	.set_rflags = vmx_set_rflags,
++
++	.tlb_flush = vmx_flush_tlb,
++	.tlb_flush_gva = vmx_flush_tlb_gva,
++
++	.run = vmx_vcpu_run,
++	.handle_exit = vmx_handle_exit,
++	.skip_emulated_instruction = skip_emulated_instruction,
++	.set_interrupt_shadow = vmx_set_interrupt_shadow,
++	.get_interrupt_shadow = vmx_get_interrupt_shadow,
++	.patch_hypercall = vmx_patch_hypercall,
++	.set_irq = vmx_inject_irq,
++	.set_nmi = vmx_inject_nmi,
++	.queue_exception = vmx_queue_exception,
++	.cancel_injection = vmx_cancel_injection,
++	.interrupt_allowed = vmx_interrupt_allowed,
++	.nmi_allowed = vmx_nmi_allowed,
++	.get_nmi_mask = vmx_get_nmi_mask,
++	.set_nmi_mask = vmx_set_nmi_mask,
++	.enable_nmi_window = enable_nmi_window,
++	.enable_irq_window = enable_irq_window,
++	.update_cr8_intercept = update_cr8_intercept,
++	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
++	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
++	.get_enable_apicv = vmx_get_enable_apicv,
++	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
++	.load_eoi_exitmap = vmx_load_eoi_exitmap,
++	.apicv_post_state_restore = vmx_apicv_post_state_restore,
++	.hwapic_irr_update = vmx_hwapic_irr_update,
++	.hwapic_isr_update = vmx_hwapic_isr_update,
++	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
++	.sync_pir_to_irr = vmx_sync_pir_to_irr,
++	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
++	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
++
++	.set_tss_addr = vmx_set_tss_addr,
++	.set_identity_map_addr = vmx_set_identity_map_addr,
++	.get_tdp_level = get_ept_level,
++	.get_mt_mask = vmx_get_mt_mask,
++
++	.get_exit_info = vmx_get_exit_info,
++
++	.get_lpage_level = vmx_get_lpage_level,
++
++	.cpuid_update = vmx_cpuid_update,
++
++	.rdtscp_supported = vmx_rdtscp_supported,
++	.invpcid_supported = vmx_invpcid_supported,
++
++	.set_supported_cpuid = vmx_set_supported_cpuid,
++
++	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
++
++	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
++	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
++
++	.set_tdp_cr3 = vmx_set_cr3,
++
++	.check_intercept = vmx_check_intercept,
++	.handle_external_intr = vmx_handle_external_intr,
++	.mpx_supported = vmx_mpx_supported,
++	.xsaves_supported = vmx_xsaves_supported,
++	.umip_emulated = vmx_umip_emulated,
++
++	.check_nested_events = vmx_check_nested_events,
++	.request_immediate_exit = vmx_request_immediate_exit,
++
++	.sched_in = vmx_sched_in,
++
++	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
++	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
++	.flush_log_dirty = vmx_flush_log_dirty,
++	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
++	.write_log_dirty = vmx_write_pml_buffer,
++
++	.pre_block = vmx_pre_block,
++	.post_block = vmx_post_block,
++
++	.pmu_ops = &intel_pmu_ops,
++
++	.update_pi_irte = vmx_update_pi_irte,
++
++#ifdef CONFIG_X86_64
++	.set_hv_timer = vmx_set_hv_timer,
++	.cancel_hv_timer = vmx_cancel_hv_timer,
++#endif
++
++	.setup_mce = vmx_setup_mce,
++
++	.get_nested_state = vmx_get_nested_state,
++	.set_nested_state = vmx_set_nested_state,
++	.get_vmcs12_pages = nested_get_vmcs12_pages,
++
++	.smi_allowed = vmx_smi_allowed,
++	.pre_enter_smm = vmx_pre_enter_smm,
++	.pre_leave_smm = vmx_pre_leave_smm,
++	.enable_smi_window = enable_smi_window,
++};
++
++static void vmx_cleanup_l1d_flush(void)
++{
++	if (vmx_l1d_flush_pages) {
++		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
++		vmx_l1d_flush_pages = NULL;
++	}
++	/* Restore state so sysfs ignores VMX */
++	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
++}
++
++static void vmx_exit(void)
++{
++#ifdef CONFIG_KEXEC_CORE
++	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
++	synchronize_rcu();
++#endif
++
++	kvm_exit();
++
++#if IS_ENABLED(CONFIG_HYPERV)
++	if (static_branch_unlikely(&enable_evmcs)) {
++		int cpu;
++		struct hv_vp_assist_page *vp_ap;
++		/*
++		 * Reset everything to support using non-enlightened VMCS
++		 * access later (e.g. when we reload the module with
++		 * enlightened_vmcs=0)
++		 */
++		for_each_online_cpu(cpu) {
++			vp_ap =	hv_get_vp_assist_page(cpu);
++
++			if (!vp_ap)
++				continue;
++
++			vp_ap->current_nested_vmcs = 0;
++			vp_ap->enlighten_vmentry = 0;
++		}
++
++		static_branch_disable(&enable_evmcs);
++	}
++#endif
++	vmx_cleanup_l1d_flush();
++}
++module_exit(vmx_exit);
++
++static int __init vmx_init(void)
++{
++	int r, cpu;
++
++#if IS_ENABLED(CONFIG_HYPERV)
++	/*
++	 * Enlightened VMCS usage should be recommended and the host needs
++	 * to support eVMCS v1 or above. We can also disable eVMCS support
++	 * with module parameter.
++	 */
++	if (enlightened_vmcs &&
++	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
++	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
++	    KVM_EVMCS_VERSION) {
++		int cpu;
++
++		/* Check that we have assist pages on all online CPUs */
++		for_each_online_cpu(cpu) {
++			if (!hv_get_vp_assist_page(cpu)) {
++				enlightened_vmcs = false;
++				break;
++			}
++		}
++
++		if (enlightened_vmcs) {
++			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
++			static_branch_enable(&enable_evmcs);
++		}
++	} else {
++		enlightened_vmcs = false;
++	}
++#endif
++
++	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
++		     __alignof__(struct vcpu_vmx), THIS_MODULE);
++	if (r)
++		return r;
++
++	/*
++	 * Must be called after kvm_init() so enable_ept is properly set
++	 * up. Hand the parameter mitigation value in which was stored in
++	 * the pre module init parser. If no parameter was given, it will
++	 * contain 'auto' which will be turned into the default 'cond'
++	 * mitigation mode.
++	 */
++	if (boot_cpu_has(X86_BUG_L1TF)) {
++		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
++		if (r) {
++			vmx_exit();
++			return r;
++		}
++	}
++
++	vmx_setup_fb_clear_ctrl();
++
++	for_each_possible_cpu(cpu) {
++		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
++
++		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
++		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
++	}
++
++#ifdef CONFIG_KEXEC_CORE
++	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
++			   crash_vmclear_local_loaded_vmcss);
++#endif
++	vmx_check_vmcs12_offsets();
++
++	return 0;
++}
++module_init(vmx_init);
+diff --git a/arch/x86/kvm/vmx/vmx_evmcs.h b/arch/x86/kvm/vmx/vmx_evmcs.h
+new file mode 100644
+index 0000000000000..210a884090ad6
+--- /dev/null
++++ b/arch/x86/kvm/vmx/vmx_evmcs.h
+@@ -0,0 +1,324 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef __KVM_X86_VMX_EVMCS_H
++#define __KVM_X86_VMX_EVMCS_H
++
++#include <asm/hyperv-tlfs.h>
++
++#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
++#define EVMCS1_OFFSET(x) offsetof(struct hv_enlightened_vmcs, x)
++#define EVMCS1_FIELD(number, name, clean_field)[ROL16(number, 6)] = \
++		{EVMCS1_OFFSET(name), clean_field}
++
++struct evmcs_field {
++	u16 offset;
++	u16 clean_field;
++};
++
++static const struct evmcs_field vmcs_field_to_evmcs_1[] = {
++	/* 64 bit rw */
++	EVMCS1_FIELD(GUEST_RIP, guest_rip,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(GUEST_RSP, guest_rsp,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC),
++	EVMCS1_FIELD(GUEST_RFLAGS, guest_rflags,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC),
++	EVMCS1_FIELD(HOST_IA32_PAT, host_ia32_pat,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_IA32_EFER, host_ia32_efer,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_CR0, host_cr0,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_CR3, host_cr3,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_CR4, host_cr4,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_RIP, host_rip,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(IO_BITMAP_A, io_bitmap_a,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP),
++	EVMCS1_FIELD(IO_BITMAP_B, io_bitmap_b,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP),
++	EVMCS1_FIELD(MSR_BITMAP, msr_bitmap,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP),
++	EVMCS1_FIELD(GUEST_ES_BASE, guest_es_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_CS_BASE, guest_cs_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_SS_BASE, guest_ss_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_DS_BASE, guest_ds_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_FS_BASE, guest_fs_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_GS_BASE, guest_gs_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_LDTR_BASE, guest_ldtr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_TR_BASE, guest_tr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_GDTR_BASE, guest_gdtr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_IDTR_BASE, guest_idtr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(TSC_OFFSET, tsc_offset,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2),
++	EVMCS1_FIELD(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2),
++	EVMCS1_FIELD(VMCS_LINK_POINTER, vmcs_link_pointer,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_IA32_PAT, guest_ia32_pat,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_IA32_EFER, guest_ia32_efer,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_PDPTR0, guest_pdptr0,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_PDPTR1, guest_pdptr1,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_PDPTR2, guest_pdptr2,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_PDPTR3, guest_pdptr3,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(CR0_READ_SHADOW, cr0_read_shadow,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(CR4_READ_SHADOW, cr4_read_shadow,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(GUEST_CR0, guest_cr0,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(GUEST_CR3, guest_cr3,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(GUEST_CR4, guest_cr4,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(GUEST_DR7, guest_dr7,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
++	EVMCS1_FIELD(HOST_FS_BASE, host_fs_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
++	EVMCS1_FIELD(HOST_GS_BASE, host_gs_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
++	EVMCS1_FIELD(HOST_TR_BASE, host_tr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
++	EVMCS1_FIELD(HOST_GDTR_BASE, host_gdtr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
++	EVMCS1_FIELD(HOST_IDTR_BASE, host_idtr_base,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
++	EVMCS1_FIELD(HOST_RSP, host_rsp,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
++	EVMCS1_FIELD(EPT_POINTER, ept_pointer,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT),
++	EVMCS1_FIELD(GUEST_BNDCFGS, guest_bndcfgs,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(XSS_EXIT_BITMAP, xss_exit_bitmap,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2),
++
++	/* 64 bit read only */
++	EVMCS1_FIELD(GUEST_PHYSICAL_ADDRESS, guest_physical_address,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(EXIT_QUALIFICATION, exit_qualification,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	/*
++	 * Not defined in KVM:
++	 *
++	 * EVMCS1_FIELD(0x00006402, exit_io_instruction_ecx,
++	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
++	 * EVMCS1_FIELD(0x00006404, exit_io_instruction_esi,
++	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
++	 * EVMCS1_FIELD(0x00006406, exit_io_instruction_esi,
++	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
++	 * EVMCS1_FIELD(0x00006408, exit_io_instruction_eip,
++	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
++	 */
++	EVMCS1_FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++
++	/*
++	 * No mask defined in the spec as Hyper-V doesn't currently support
++	 * these. Future proof by resetting the whole clean field mask on
++	 * access.
++	 */
++	EVMCS1_FIELD(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(CR3_TARGET_VALUE0, cr3_target_value0,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(CR3_TARGET_VALUE1, cr3_target_value1,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(CR3_TARGET_VALUE2, cr3_target_value2,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(CR3_TARGET_VALUE3, cr3_target_value3,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++
++	/* 32 bit rw */
++	EVMCS1_FIELD(TPR_THRESHOLD, tpr_threshold,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC),
++	EVMCS1_FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC),
++	EVMCS1_FIELD(EXCEPTION_BITMAP, exception_bitmap,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN),
++	EVMCS1_FIELD(VM_ENTRY_CONTROLS, vm_entry_controls,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY),
++	EVMCS1_FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT),
++	EVMCS1_FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE,
++		     vm_entry_exception_error_code,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT),
++	EVMCS1_FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT),
++	EVMCS1_FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1),
++	EVMCS1_FIELD(VM_EXIT_CONTROLS, vm_exit_controls,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1),
++	EVMCS1_FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1),
++	EVMCS1_FIELD(GUEST_ES_LIMIT, guest_es_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_CS_LIMIT, guest_cs_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_SS_LIMIT, guest_ss_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_DS_LIMIT, guest_ds_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_FS_LIMIT, guest_fs_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_GS_LIMIT, guest_gs_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_TR_LIMIT, guest_tr_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_ACTIVITY_STATE, guest_activity_state,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++	EVMCS1_FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
++
++	/* 32 bit read only */
++	EVMCS1_FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(VM_EXIT_REASON, vm_exit_reason,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++	EVMCS1_FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
++
++	/* No mask defined in the spec (not used) */
++	EVMCS1_FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(CR3_TARGET_COUNT, cr3_target_count,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++	EVMCS1_FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
++
++	/* 16 bit rw */
++	EVMCS1_FIELD(HOST_ES_SELECTOR, host_es_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_CS_SELECTOR, host_cs_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_SS_SELECTOR, host_ss_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_DS_SELECTOR, host_ds_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_FS_SELECTOR, host_fs_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_GS_SELECTOR, host_gs_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(HOST_TR_SELECTOR, host_tr_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
++	EVMCS1_FIELD(GUEST_ES_SELECTOR, guest_es_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_CS_SELECTOR, guest_cs_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_SS_SELECTOR, guest_ss_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_DS_SELECTOR, guest_ds_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_FS_SELECTOR, guest_fs_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_GS_SELECTOR, guest_gs_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(GUEST_TR_SELECTOR, guest_tr_selector,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
++	EVMCS1_FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id,
++		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT),
++};
++
++static __always_inline int get_evmcs_offset(unsigned long field,
++					    u16 *clean_field)
++{
++	unsigned int index = ROL16(field, 6);
++	const struct evmcs_field *evmcs_field;
++
++	if (unlikely(index >= ARRAY_SIZE(vmcs_field_to_evmcs_1))) {
++		WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n",
++			  field);
++		return -ENOENT;
++	}
++
++	evmcs_field = &vmcs_field_to_evmcs_1[index];
++
++	if (clean_field)
++		*clean_field = evmcs_field->clean_field;
++
++	return evmcs_field->offset;
++}
++
++#undef ROL16
++
++#endif /* __KVM_X86_VMX_EVMCS_H */
+diff --git a/arch/x86/kvm/vmx/vmx_shadow_fields.h b/arch/x86/kvm/vmx/vmx_shadow_fields.h
+new file mode 100644
+index 0000000000000..cd0c75f6d037a
+--- /dev/null
++++ b/arch/x86/kvm/vmx/vmx_shadow_fields.h
+@@ -0,0 +1,77 @@
++#ifndef SHADOW_FIELD_RO
++#define SHADOW_FIELD_RO(x)
++#endif
++#ifndef SHADOW_FIELD_RW
++#define SHADOW_FIELD_RW(x)
++#endif
++
++/*
++ * We do NOT shadow fields that are modified when L0
++ * traps and emulates any vmx instruction (e.g. VMPTRLD,
++ * VMXON...) executed by L1.
++ * For example, VM_INSTRUCTION_ERROR is read
++ * by L1 if a vmx instruction fails (part of the error path).
++ * Note the code assumes this logic. If for some reason
++ * we start shadowing these fields then we need to
++ * force a shadow sync when L0 emulates vmx instructions
++ * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
++ * by nested_vmx_failValid)
++ *
++ * When adding or removing fields here, note that shadowed
++ * fields must always be synced by prepare_vmcs02, not just
++ * prepare_vmcs02_full.
++ */
++
++/*
++ * Keeping the fields ordered by size is an attempt at improving
++ * branch prediction in vmcs_read_any and vmcs_write_any.
++ */
++
++/* 16-bits */
++SHADOW_FIELD_RW(GUEST_CS_SELECTOR)
++SHADOW_FIELD_RW(GUEST_INTR_STATUS)
++SHADOW_FIELD_RW(GUEST_PML_INDEX)
++SHADOW_FIELD_RW(HOST_FS_SELECTOR)
++SHADOW_FIELD_RW(HOST_GS_SELECTOR)
++
++/* 32-bits */
++SHADOW_FIELD_RO(VM_EXIT_REASON)
++SHADOW_FIELD_RO(VM_EXIT_INTR_INFO)
++SHADOW_FIELD_RO(VM_EXIT_INSTRUCTION_LEN)
++SHADOW_FIELD_RO(IDT_VECTORING_INFO_FIELD)
++SHADOW_FIELD_RO(IDT_VECTORING_ERROR_CODE)
++SHADOW_FIELD_RO(VM_EXIT_INTR_ERROR_CODE)
++SHADOW_FIELD_RW(CPU_BASED_VM_EXEC_CONTROL)
++SHADOW_FIELD_RW(EXCEPTION_BITMAP)
++SHADOW_FIELD_RW(VM_ENTRY_EXCEPTION_ERROR_CODE)
++SHADOW_FIELD_RW(VM_ENTRY_INTR_INFO_FIELD)
++SHADOW_FIELD_RW(VM_ENTRY_INSTRUCTION_LEN)
++SHADOW_FIELD_RW(TPR_THRESHOLD)
++SHADOW_FIELD_RW(GUEST_CS_LIMIT)
++SHADOW_FIELD_RW(GUEST_CS_AR_BYTES)
++SHADOW_FIELD_RW(GUEST_INTERRUPTIBILITY_INFO)
++SHADOW_FIELD_RW(VMX_PREEMPTION_TIMER_VALUE)
++
++/* Natural width */
++SHADOW_FIELD_RO(EXIT_QUALIFICATION)
++SHADOW_FIELD_RO(GUEST_LINEAR_ADDRESS)
++SHADOW_FIELD_RW(GUEST_RIP)
++SHADOW_FIELD_RW(GUEST_RSP)
++SHADOW_FIELD_RW(GUEST_CR0)
++SHADOW_FIELD_RW(GUEST_CR3)
++SHADOW_FIELD_RW(GUEST_CR4)
++SHADOW_FIELD_RW(GUEST_RFLAGS)
++SHADOW_FIELD_RW(GUEST_CS_BASE)
++SHADOW_FIELD_RW(GUEST_ES_BASE)
++SHADOW_FIELD_RW(CR0_GUEST_HOST_MASK)
++SHADOW_FIELD_RW(CR0_READ_SHADOW)
++SHADOW_FIELD_RW(CR4_READ_SHADOW)
++SHADOW_FIELD_RW(HOST_FS_BASE)
++SHADOW_FIELD_RW(HOST_GS_BASE)
++
++/* 64-bit */
++SHADOW_FIELD_RO(GUEST_PHYSICAL_ADDRESS)
++SHADOW_FIELD_RO(GUEST_PHYSICAL_ADDRESS_HIGH)
++
++#undef SHADOW_FIELD_RO
++#undef SHADOW_FIELD_RW
+diff --git a/arch/x86/kvm/vmx_evmcs.h b/arch/x86/kvm/vmx_evmcs.h
+deleted file mode 100644
+index 210a884090ad6..0000000000000
+--- a/arch/x86/kvm/vmx_evmcs.h
++++ /dev/null
+@@ -1,324 +0,0 @@
+-/* SPDX-License-Identifier: GPL-2.0 */
+-#ifndef __KVM_X86_VMX_EVMCS_H
+-#define __KVM_X86_VMX_EVMCS_H
+-
+-#include <asm/hyperv-tlfs.h>
+-
+-#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+-#define EVMCS1_OFFSET(x) offsetof(struct hv_enlightened_vmcs, x)
+-#define EVMCS1_FIELD(number, name, clean_field)[ROL16(number, 6)] = \
+-		{EVMCS1_OFFSET(name), clean_field}
+-
+-struct evmcs_field {
+-	u16 offset;
+-	u16 clean_field;
+-};
+-
+-static const struct evmcs_field vmcs_field_to_evmcs_1[] = {
+-	/* 64 bit rw */
+-	EVMCS1_FIELD(GUEST_RIP, guest_rip,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(GUEST_RSP, guest_rsp,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC),
+-	EVMCS1_FIELD(GUEST_RFLAGS, guest_rflags,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC),
+-	EVMCS1_FIELD(HOST_IA32_PAT, host_ia32_pat,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_IA32_EFER, host_ia32_efer,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_CR0, host_cr0,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_CR3, host_cr3,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_CR4, host_cr4,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_RIP, host_rip,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(IO_BITMAP_A, io_bitmap_a,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP),
+-	EVMCS1_FIELD(IO_BITMAP_B, io_bitmap_b,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP),
+-	EVMCS1_FIELD(MSR_BITMAP, msr_bitmap,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP),
+-	EVMCS1_FIELD(GUEST_ES_BASE, guest_es_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_CS_BASE, guest_cs_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_SS_BASE, guest_ss_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_DS_BASE, guest_ds_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_FS_BASE, guest_fs_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_GS_BASE, guest_gs_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_LDTR_BASE, guest_ldtr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_TR_BASE, guest_tr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_GDTR_BASE, guest_gdtr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_IDTR_BASE, guest_idtr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(TSC_OFFSET, tsc_offset,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2),
+-	EVMCS1_FIELD(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2),
+-	EVMCS1_FIELD(VMCS_LINK_POINTER, vmcs_link_pointer,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_IA32_PAT, guest_ia32_pat,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_IA32_EFER, guest_ia32_efer,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_PDPTR0, guest_pdptr0,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_PDPTR1, guest_pdptr1,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_PDPTR2, guest_pdptr2,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_PDPTR3, guest_pdptr3,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(CR0_READ_SHADOW, cr0_read_shadow,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(CR4_READ_SHADOW, cr4_read_shadow,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(GUEST_CR0, guest_cr0,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(GUEST_CR3, guest_cr3,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(GUEST_CR4, guest_cr4,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(GUEST_DR7, guest_dr7,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR),
+-	EVMCS1_FIELD(HOST_FS_BASE, host_fs_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
+-	EVMCS1_FIELD(HOST_GS_BASE, host_gs_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
+-	EVMCS1_FIELD(HOST_TR_BASE, host_tr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
+-	EVMCS1_FIELD(HOST_GDTR_BASE, host_gdtr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
+-	EVMCS1_FIELD(HOST_IDTR_BASE, host_idtr_base,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
+-	EVMCS1_FIELD(HOST_RSP, host_rsp,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER),
+-	EVMCS1_FIELD(EPT_POINTER, ept_pointer,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT),
+-	EVMCS1_FIELD(GUEST_BNDCFGS, guest_bndcfgs,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(XSS_EXIT_BITMAP, xss_exit_bitmap,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2),
+-
+-	/* 64 bit read only */
+-	EVMCS1_FIELD(GUEST_PHYSICAL_ADDRESS, guest_physical_address,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(EXIT_QUALIFICATION, exit_qualification,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	/*
+-	 * Not defined in KVM:
+-	 *
+-	 * EVMCS1_FIELD(0x00006402, exit_io_instruction_ecx,
+-	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
+-	 * EVMCS1_FIELD(0x00006404, exit_io_instruction_esi,
+-	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
+-	 * EVMCS1_FIELD(0x00006406, exit_io_instruction_esi,
+-	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
+-	 * EVMCS1_FIELD(0x00006408, exit_io_instruction_eip,
+-	 *		HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE);
+-	 */
+-	EVMCS1_FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-
+-	/*
+-	 * No mask defined in the spec as Hyper-V doesn't currently support
+-	 * these. Future proof by resetting the whole clean field mask on
+-	 * access.
+-	 */
+-	EVMCS1_FIELD(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(CR3_TARGET_VALUE0, cr3_target_value0,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(CR3_TARGET_VALUE1, cr3_target_value1,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(CR3_TARGET_VALUE2, cr3_target_value2,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(CR3_TARGET_VALUE3, cr3_target_value3,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-
+-	/* 32 bit rw */
+-	EVMCS1_FIELD(TPR_THRESHOLD, tpr_threshold,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC),
+-	EVMCS1_FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC),
+-	EVMCS1_FIELD(EXCEPTION_BITMAP, exception_bitmap,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN),
+-	EVMCS1_FIELD(VM_ENTRY_CONTROLS, vm_entry_controls,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY),
+-	EVMCS1_FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT),
+-	EVMCS1_FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE,
+-		     vm_entry_exception_error_code,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT),
+-	EVMCS1_FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT),
+-	EVMCS1_FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1),
+-	EVMCS1_FIELD(VM_EXIT_CONTROLS, vm_exit_controls,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1),
+-	EVMCS1_FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1),
+-	EVMCS1_FIELD(GUEST_ES_LIMIT, guest_es_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_CS_LIMIT, guest_cs_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_SS_LIMIT, guest_ss_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_DS_LIMIT, guest_ds_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_FS_LIMIT, guest_fs_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_GS_LIMIT, guest_gs_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_TR_LIMIT, guest_tr_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_ACTIVITY_STATE, guest_activity_state,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-	EVMCS1_FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1),
+-
+-	/* 32 bit read only */
+-	EVMCS1_FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(VM_EXIT_REASON, vm_exit_reason,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-	EVMCS1_FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
+-
+-	/* No mask defined in the spec (not used) */
+-	EVMCS1_FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(CR3_TARGET_COUNT, cr3_target_count,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-	EVMCS1_FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL),
+-
+-	/* 16 bit rw */
+-	EVMCS1_FIELD(HOST_ES_SELECTOR, host_es_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_CS_SELECTOR, host_cs_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_SS_SELECTOR, host_ss_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_DS_SELECTOR, host_ds_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_FS_SELECTOR, host_fs_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_GS_SELECTOR, host_gs_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(HOST_TR_SELECTOR, host_tr_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1),
+-	EVMCS1_FIELD(GUEST_ES_SELECTOR, guest_es_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_CS_SELECTOR, guest_cs_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_SS_SELECTOR, guest_ss_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_DS_SELECTOR, guest_ds_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_FS_SELECTOR, guest_fs_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_GS_SELECTOR, guest_gs_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(GUEST_TR_SELECTOR, guest_tr_selector,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2),
+-	EVMCS1_FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id,
+-		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT),
+-};
+-
+-static __always_inline int get_evmcs_offset(unsigned long field,
+-					    u16 *clean_field)
+-{
+-	unsigned int index = ROL16(field, 6);
+-	const struct evmcs_field *evmcs_field;
+-
+-	if (unlikely(index >= ARRAY_SIZE(vmcs_field_to_evmcs_1))) {
+-		WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n",
+-			  field);
+-		return -ENOENT;
+-	}
+-
+-	evmcs_field = &vmcs_field_to_evmcs_1[index];
+-
+-	if (clean_field)
+-		*clean_field = evmcs_field->clean_field;
+-
+-	return evmcs_field->offset;
+-}
+-
+-#undef ROL16
+-
+-#endif /* __KVM_X86_VMX_EVMCS_H */
+diff --git a/arch/x86/kvm/vmx_shadow_fields.h b/arch/x86/kvm/vmx_shadow_fields.h
+deleted file mode 100644
+index cd0c75f6d037a..0000000000000
+--- a/arch/x86/kvm/vmx_shadow_fields.h
++++ /dev/null
+@@ -1,77 +0,0 @@
+-#ifndef SHADOW_FIELD_RO
+-#define SHADOW_FIELD_RO(x)
+-#endif
+-#ifndef SHADOW_FIELD_RW
+-#define SHADOW_FIELD_RW(x)
+-#endif
+-
+-/*
+- * We do NOT shadow fields that are modified when L0
+- * traps and emulates any vmx instruction (e.g. VMPTRLD,
+- * VMXON...) executed by L1.
+- * For example, VM_INSTRUCTION_ERROR is read
+- * by L1 if a vmx instruction fails (part of the error path).
+- * Note the code assumes this logic. If for some reason
+- * we start shadowing these fields then we need to
+- * force a shadow sync when L0 emulates vmx instructions
+- * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
+- * by nested_vmx_failValid)
+- *
+- * When adding or removing fields here, note that shadowed
+- * fields must always be synced by prepare_vmcs02, not just
+- * prepare_vmcs02_full.
+- */
+-
+-/*
+- * Keeping the fields ordered by size is an attempt at improving
+- * branch prediction in vmcs_read_any and vmcs_write_any.
+- */
+-
+-/* 16-bits */
+-SHADOW_FIELD_RW(GUEST_CS_SELECTOR)
+-SHADOW_FIELD_RW(GUEST_INTR_STATUS)
+-SHADOW_FIELD_RW(GUEST_PML_INDEX)
+-SHADOW_FIELD_RW(HOST_FS_SELECTOR)
+-SHADOW_FIELD_RW(HOST_GS_SELECTOR)
+-
+-/* 32-bits */
+-SHADOW_FIELD_RO(VM_EXIT_REASON)
+-SHADOW_FIELD_RO(VM_EXIT_INTR_INFO)
+-SHADOW_FIELD_RO(VM_EXIT_INSTRUCTION_LEN)
+-SHADOW_FIELD_RO(IDT_VECTORING_INFO_FIELD)
+-SHADOW_FIELD_RO(IDT_VECTORING_ERROR_CODE)
+-SHADOW_FIELD_RO(VM_EXIT_INTR_ERROR_CODE)
+-SHADOW_FIELD_RW(CPU_BASED_VM_EXEC_CONTROL)
+-SHADOW_FIELD_RW(EXCEPTION_BITMAP)
+-SHADOW_FIELD_RW(VM_ENTRY_EXCEPTION_ERROR_CODE)
+-SHADOW_FIELD_RW(VM_ENTRY_INTR_INFO_FIELD)
+-SHADOW_FIELD_RW(VM_ENTRY_INSTRUCTION_LEN)
+-SHADOW_FIELD_RW(TPR_THRESHOLD)
+-SHADOW_FIELD_RW(GUEST_CS_LIMIT)
+-SHADOW_FIELD_RW(GUEST_CS_AR_BYTES)
+-SHADOW_FIELD_RW(GUEST_INTERRUPTIBILITY_INFO)
+-SHADOW_FIELD_RW(VMX_PREEMPTION_TIMER_VALUE)
+-
+-/* Natural width */
+-SHADOW_FIELD_RO(EXIT_QUALIFICATION)
+-SHADOW_FIELD_RO(GUEST_LINEAR_ADDRESS)
+-SHADOW_FIELD_RW(GUEST_RIP)
+-SHADOW_FIELD_RW(GUEST_RSP)
+-SHADOW_FIELD_RW(GUEST_CR0)
+-SHADOW_FIELD_RW(GUEST_CR3)
+-SHADOW_FIELD_RW(GUEST_CR4)
+-SHADOW_FIELD_RW(GUEST_RFLAGS)
+-SHADOW_FIELD_RW(GUEST_CS_BASE)
+-SHADOW_FIELD_RW(GUEST_ES_BASE)
+-SHADOW_FIELD_RW(CR0_GUEST_HOST_MASK)
+-SHADOW_FIELD_RW(CR0_READ_SHADOW)
+-SHADOW_FIELD_RW(CR4_READ_SHADOW)
+-SHADOW_FIELD_RW(HOST_FS_BASE)
+-SHADOW_FIELD_RW(HOST_GS_BASE)
+-
+-/* 64-bit */
+-SHADOW_FIELD_RO(GUEST_PHYSICAL_ADDRESS)
+-SHADOW_FIELD_RO(GUEST_PHYSICAL_ADDRESS_HIGH)
+-
+-#undef SHADOW_FIELD_RO
+-#undef SHADOW_FIELD_RW
+diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
+index 8fe615df8e5b6..ff7ec9b507e33 100644
+--- a/arch/x86/kvm/x86.c
++++ b/arch/x86/kvm/x86.c
+@@ -3637,12 +3637,11 @@ static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
+ {
+ 	unsigned long val;
+ 
++	memset(dbgregs, 0, sizeof(*dbgregs));
+ 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
+ 	kvm_get_dr(vcpu, 6, &val);
+ 	dbgregs->dr6 = val;
+ 	dbgregs->dr7 = vcpu->arch.dr7;
+-	dbgregs->flags = 0;
+-	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
+ }
+ 
+ static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
+diff --git a/drivers/ata/libata-core.c b/drivers/ata/libata-core.c
+index 6d110a1c090dd..4a7da8f744e03 100644
+--- a/drivers/ata/libata-core.c
++++ b/drivers/ata/libata-core.c
+@@ -3112,7 +3112,7 @@ int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
+ 	 */
+ 	if (spd > 1)
+ 		mask &= (1 << (spd - 1)) - 1;
+-	else
++	else if (link->sata_spd)
+ 		return -EINVAL;
+ 
+ 	/* were we already at the bottom? */
+diff --git a/drivers/bus/sunxi-rsb.c b/drivers/bus/sunxi-rsb.c
+index d3fb350dc9eea..bf4db708f0bd3 100644
+--- a/drivers/bus/sunxi-rsb.c
++++ b/drivers/bus/sunxi-rsb.c
+@@ -783,7 +783,13 @@ static int __init sunxi_rsb_init(void)
+ 		return ret;
+ 	}
+ 
+-	return platform_driver_register(&sunxi_rsb_driver);
++	ret = platform_driver_register(&sunxi_rsb_driver);
++	if (ret) {
++		bus_unregister(&sunxi_rsb_bus);
++		return ret;
++	}
++
++	return 0;
+ }
+ module_init(sunxi_rsb_init);
+ 
+diff --git a/drivers/firewire/core-cdev.c b/drivers/firewire/core-cdev.c
+index bf03455b6fc20..0d628aa11be5c 100644
+--- a/drivers/firewire/core-cdev.c
++++ b/drivers/firewire/core-cdev.c
+@@ -831,8 +831,10 @@ static int ioctl_send_response(struct client *client, union ioctl_arg *arg)
+ 
+ 	r = container_of(resource, struct inbound_transaction_resource,
+ 			 resource);
+-	if (is_fcp_request(r->request))
++	if (is_fcp_request(r->request)) {
++		kfree(r->data);
+ 		goto out;
++	}
+ 
+ 	if (a->length != fw_get_response_length(r->request)) {
+ 		ret = -EINVAL;
+diff --git a/drivers/firmware/efi/memattr.c b/drivers/firmware/efi/memattr.c
+index e0889922cc6d7..a1ef30fca360d 100644
+--- a/drivers/firmware/efi/memattr.c
++++ b/drivers/firmware/efi/memattr.c
+@@ -35,7 +35,7 @@ int __init efi_memattr_init(void)
+ 		return -ENOMEM;
+ 	}
+ 
+-	if (tbl->version > 1) {
++	if (tbl->version > 2) {
+ 		pr_warn("Unexpected EFI Memory Attributes table version %d\n",
+ 			tbl->version);
+ 		goto unmap;
+diff --git a/drivers/i2c/busses/i2c-rk3x.c b/drivers/i2c/busses/i2c-rk3x.c
+index e76ad020a5420..61ab462fd94cf 100644
+--- a/drivers/i2c/busses/i2c-rk3x.c
++++ b/drivers/i2c/busses/i2c-rk3x.c
+@@ -82,7 +82,7 @@ enum {
+ #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
+ 
+ /**
+- * struct i2c_spec_values:
++ * struct i2c_spec_values - I2C specification values for various modes
+  * @min_hold_start_ns: min hold time (repeated) START condition
+  * @min_low_ns: min LOW period of the SCL clock
+  * @min_high_ns: min HIGH period of the SCL cloc
+@@ -138,7 +138,7 @@ static const struct i2c_spec_values fast_mode_plus_spec = {
+ };
+ 
+ /**
+- * struct rk3x_i2c_calced_timings:
++ * struct rk3x_i2c_calced_timings - calculated V1 timings
+  * @div_low: Divider output for low
+  * @div_high: Divider output for high
+  * @tuning: Used to adjust setup/hold data time,
+@@ -161,7 +161,7 @@ enum rk3x_i2c_state {
+ };
+ 
+ /**
+- * struct rk3x_i2c_soc_data:
++ * struct rk3x_i2c_soc_data - SOC-specific data
+  * @grf_offset: offset inside the grf regmap for setting the i2c type
+  * @calc_timings: Callback function for i2c timing information calculated
+  */
+@@ -241,7 +241,8 @@ static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
+ }
+ 
+ /**
+- * Generate a START condition, which triggers a REG_INT_START interrupt.
++ * rk3x_i2c_start - Generate a START condition, which triggers a REG_INT_START interrupt.
++ * @i2c: target controller data
+  */
+ static void rk3x_i2c_start(struct rk3x_i2c *i2c)
+ {
+@@ -260,8 +261,8 @@ static void rk3x_i2c_start(struct rk3x_i2c *i2c)
+ }
+ 
+ /**
+- * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
+- *
++ * rk3x_i2c_stop - Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
++ * @i2c: target controller data
+  * @error: Error code to return in rk3x_i2c_xfer
+  */
+ static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
+@@ -300,7 +301,8 @@ static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
+ }
+ 
+ /**
+- * Setup a read according to i2c->msg
++ * rk3x_i2c_prepare_read - Setup a read according to i2c->msg
++ * @i2c: target controller data
+  */
+ static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
+ {
+@@ -331,7 +333,8 @@ static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
+ }
+ 
+ /**
+- * Fill the transmit buffer with data from i2c->msg
++ * rk3x_i2c_fill_transmit_buf - Fill the transmit buffer with data from i2c->msg
++ * @i2c: target controller data
+  */
+ static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
+ {
+@@ -534,11 +537,10 @@ out:
+ }
+ 
+ /**
+- * Get timing values of I2C specification
+- *
++ * rk3x_i2c_get_spec - Get timing values of I2C specification
+  * @speed: Desired SCL frequency
+  *
+- * Returns: Matched i2c spec values.
++ * Return: Matched i2c_spec_values.
+  */
+ static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
+ {
+@@ -551,13 +553,12 @@ static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
+ }
+ 
+ /**
+- * Calculate divider values for desired SCL frequency
+- *
++ * rk3x_i2c_v0_calc_timings - Calculate divider values for desired SCL frequency
+  * @clk_rate: I2C input clock rate
+  * @t: Known I2C timing information
+  * @t_calc: Caculated rk3x private timings that would be written into regs
+  *
+- * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
++ * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
+  * a best-effort divider value is returned in divs. If the target rate is
+  * too high, we silently use the highest possible rate.
+  */
+@@ -712,13 +713,12 @@ static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
+ }
+ 
+ /**
+- * Calculate timing values for desired SCL frequency
+- *
++ * rk3x_i2c_v1_calc_timings - Calculate timing values for desired SCL frequency
+  * @clk_rate: I2C input clock rate
+  * @t: Known I2C timing information
+  * @t_calc: Caculated rk3x private timings that would be written into regs
+  *
+- * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
++ * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
+  * a best-effort divider value is returned in divs. If the target rate is
+  * too high, we silently use the highest possible rate.
+  * The following formulas are v1's method to calculate timings.
+@@ -962,14 +962,14 @@ static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
+ }
+ 
+ /**
+- * Setup I2C registers for an I2C operation specified by msgs, num.
+- *
+- * Must be called with i2c->lock held.
+- *
++ * rk3x_i2c_setup - Setup I2C registers for an I2C operation specified by msgs, num.
++ * @i2c: target controller data
+  * @msgs: I2C msgs to process
+  * @num: Number of msgs
+  *
+- * returns: Number of I2C msgs processed or negative in case of error
++ * Must be called with i2c->lock held.
++ *
++ * Return: Number of I2C msgs processed or negative in case of error
+  */
+ static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
+ {
+diff --git a/drivers/iio/accel/hid-sensor-accel-3d.c b/drivers/iio/accel/hid-sensor-accel-3d.c
+index 32d5438d45194..d8506a83ba085 100644
+--- a/drivers/iio/accel/hid-sensor-accel-3d.c
++++ b/drivers/iio/accel/hid-sensor-accel-3d.c
+@@ -292,6 +292,7 @@ static int accel_3d_capture_sample(struct hid_sensor_hub_device *hsdev,
+ 			hid_sensor_convert_timestamp(
+ 					&accel_state->common_attributes,
+ 					*(int64_t *)raw_data);
++		ret = 0;
+ 	break;
+ 	default:
+ 		break;
+diff --git a/drivers/iio/adc/berlin2-adc.c b/drivers/iio/adc/berlin2-adc.c
+index 72d8fa94ab31c..86fdfea329799 100644
+--- a/drivers/iio/adc/berlin2-adc.c
++++ b/drivers/iio/adc/berlin2-adc.c
+@@ -289,8 +289,10 @@ static int berlin2_adc_probe(struct platform_device *pdev)
+ 	int ret;
+ 
+ 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
+-	if (!indio_dev)
++	if (!indio_dev) {
++		of_node_put(parent_np);
+ 		return -ENOMEM;
++	}
+ 
+ 	priv = iio_priv(indio_dev);
+ 	platform_set_drvdata(pdev, indio_dev);
+diff --git a/drivers/iio/adc/stm32-dfsdm-adc.c b/drivers/iio/adc/stm32-dfsdm-adc.c
+index 1c492a7f45875..bb90b22b809cc 100644
+--- a/drivers/iio/adc/stm32-dfsdm-adc.c
++++ b/drivers/iio/adc/stm32-dfsdm-adc.c
+@@ -1099,6 +1099,7 @@ static const struct of_device_id stm32_dfsdm_adc_match[] = {
+ 	},
+ 	{}
+ };
++MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
+ 
+ static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
+ {
+diff --git a/drivers/iio/adc/twl6030-gpadc.c b/drivers/iio/adc/twl6030-gpadc.c
+index 765aaee157e28..3007cfbf84918 100644
+--- a/drivers/iio/adc/twl6030-gpadc.c
++++ b/drivers/iio/adc/twl6030-gpadc.c
+@@ -71,6 +71,18 @@
+ #define TWL6030_GPADCS				BIT(1)
+ #define TWL6030_GPADCR				BIT(0)
+ 
++#define USB_VBUS_CTRL_SET			0x04
++#define USB_ID_CTRL_SET				0x06
++
++#define TWL6030_MISC1				0xE4
++#define VBUS_MEAS				0x01
++#define ID_MEAS					0x01
++
++#define VAC_MEAS                0x04
++#define VBAT_MEAS               0x02
++#define BB_MEAS                 0x01
++
++
+ /**
+  * struct twl6030_chnl_calib - channel calibration
+  * @gain:		slope coefficient for ideal curve
+@@ -943,6 +955,26 @@ static int twl6030_gpadc_probe(struct platform_device *pdev)
+ 		return ret;
+ 	}
+ 
++	ret = twl_i2c_write_u8(TWL_MODULE_USB, VBUS_MEAS, USB_VBUS_CTRL_SET);
++	if (ret < 0) {
++		dev_err(dev, "failed to wire up inputs\n");
++		return ret;
++	}
++
++	ret = twl_i2c_write_u8(TWL_MODULE_USB, ID_MEAS, USB_ID_CTRL_SET);
++	if (ret < 0) {
++		dev_err(dev, "failed to wire up inputs\n");
++		return ret;
++	}
++
++	ret = twl_i2c_write_u8(TWL6030_MODULE_ID0,
++				VBAT_MEAS | BB_MEAS | VAC_MEAS,
++				TWL6030_MISC1);
++	if (ret < 0) {
++		dev_err(dev, "failed to wire up inputs\n");
++		return ret;
++	}
++
+ 	indio_dev->name = DRIVER_NAME;
+ 	indio_dev->dev.parent = dev;
+ 	indio_dev->info = &twl6030_gpadc_iio_info;
+diff --git a/drivers/infiniband/hw/hfi1/file_ops.c b/drivers/infiniband/hw/hfi1/file_ops.c
+index be31faf6cc620..071d39c614b21 100644
+--- a/drivers/infiniband/hw/hfi1/file_ops.c
++++ b/drivers/infiniband/hw/hfi1/file_ops.c
+@@ -1361,12 +1361,15 @@ static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
+ 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
+ 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
+ 				 sizeof(tinfo.tidcnt)))
+-			return -EFAULT;
++			ret = -EFAULT;
+ 
+ 		addr = arg + offsetof(struct hfi1_tid_info, length);
+-		if (copy_to_user((void __user *)addr, &tinfo.length,
++		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
+ 				 sizeof(tinfo.length)))
+ 			ret = -EFAULT;
++
++		if (ret)
++			hfi1_user_exp_rcv_invalid(fd, &tinfo);
+ 	}
+ 
+ 	return ret;
+diff --git a/drivers/input/serio/i8042-x86ia64io.h b/drivers/input/serio/i8042-x86ia64io.h
+index ee0b0a7237ad8..b2ab20c16cc77 100644
+--- a/drivers/input/serio/i8042-x86ia64io.h
++++ b/drivers/input/serio/i8042-x86ia64io.h
+@@ -71,25 +71,84 @@ static inline void i8042_write_command(int val)
+ 
+ #include <linux/dmi.h>
+ 
+-static const struct dmi_system_id __initconst i8042_dmi_noloop_table[] = {
++#define SERIO_QUIRK_NOKBD		BIT(0)
++#define SERIO_QUIRK_NOAUX		BIT(1)
++#define SERIO_QUIRK_NOMUX		BIT(2)
++#define SERIO_QUIRK_FORCEMUX		BIT(3)
++#define SERIO_QUIRK_UNLOCK		BIT(4)
++#define SERIO_QUIRK_PROBE_DEFER		BIT(5)
++#define SERIO_QUIRK_RESET_ALWAYS	BIT(6)
++#define SERIO_QUIRK_RESET_NEVER		BIT(7)
++#define SERIO_QUIRK_DIECT		BIT(8)
++#define SERIO_QUIRK_DUMBKBD		BIT(9)
++#define SERIO_QUIRK_NOLOOP		BIT(10)
++#define SERIO_QUIRK_NOTIMEOUT		BIT(11)
++#define SERIO_QUIRK_KBDRESET		BIT(12)
++#define SERIO_QUIRK_DRITEK		BIT(13)
++#define SERIO_QUIRK_NOPNP		BIT(14)
++
++/* Quirk table for different mainboards. Options similar or identical to i8042
++ * module parameters.
++ * ORDERING IS IMPORTANT! The first match will be apllied and the rest ignored.
++ * This allows entries to overwrite vendor wide quirks on a per device basis.
++ * Where this is irrelevant, entries are sorted case sensitive by DMI_SYS_VENDOR
++ * and/or DMI_BOARD_VENDOR to make it easier to avoid dublicate entries.
++ */
++static const struct dmi_system_id i8042_dmi_quirk_table[] __initconst = {
+ 	{
+-		/*
+-		 * Arima-Rioworks HDAMB -
+-		 * AUX LOOP command does not raise AUX IRQ
+-		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_VENDOR, "RIOWORKS"),
+-			DMI_MATCH(DMI_BOARD_NAME, "HDAMB"),
+-			DMI_MATCH(DMI_BOARD_VERSION, "Rev E"),
++			DMI_MATCH(DMI_SYS_VENDOR, "ALIENWARE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Sentia"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* ASUS G1S */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer Inc."),
+-			DMI_MATCH(DMI_BOARD_NAME, "G1S"),
+-			DMI_MATCH(DMI_BOARD_VERSION, "1.0"),
++			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "X750LN"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
++	},
++	{
++		/* Asus X450LCP */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "X450LCP"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_NEVER)
++	},
++	{
++		/* ASUS ZenBook UX425UA */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "ZenBook UX425UA"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_PROBE_DEFER | SERIO_QUIRK_RESET_NEVER)
++	},
++	{
++		/* ASUS ZenBook UM325UA */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "ZenBook UX325UA_UM325UA"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_PROBE_DEFER | SERIO_QUIRK_RESET_NEVER)
++	},
++	/*
++	 * On some Asus laptops, just running self tests cause problems.
++	 */
++	{
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
++			DMI_MATCH(DMI_CHASSIS_TYPE, "10"), /* Notebook */
++		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_NEVER)
++	},
++	{
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
++			DMI_MATCH(DMI_CHASSIS_TYPE, "31"), /* Convertible Notebook */
++		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_NEVER)
+ 	},
+ 	{
+ 		/* ASUS P65UP5 - AUX LOOP command does not raise AUX IRQ */
+@@ -98,585 +157,681 @@ static const struct dmi_system_id __initconst i8042_dmi_noloop_table[] = {
+ 			DMI_MATCH(DMI_BOARD_NAME, "P/I-P65UP5"),
+ 			DMI_MATCH(DMI_BOARD_VERSION, "REV 2.X"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
++		/* ASUS G1S */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "X750LN"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer Inc."),
++			DMI_MATCH(DMI_BOARD_NAME, "G1S"),
++			DMI_MATCH(DMI_BOARD_VERSION, "1.0"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
+-			DMI_MATCH(DMI_PRODUCT_NAME , "ProLiant"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "8500"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 1360"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
++		/* Acer Aspire 5710 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
+-			DMI_MATCH(DMI_PRODUCT_NAME , "ProLiant"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "DL760"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5710"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Dell Embedded Box PC 3000 */
++		/* Acer Aspire 7738 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Embedded Box PC 3000"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 7738"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* OQO Model 01 */
++		/* Acer Aspire 5536 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "OQO"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "ZEPTO"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "00"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5536"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "0100"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* ULI EV4873 - AUX LOOP does not work properly */
++		/*
++		 * Acer Aspire 5738z
++		 * Touchpad stops working in mux mode when dis- + re-enabled
++		 * with the touchpad enable/disable toggle hotkey
++		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ULI"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "EV4873"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "5a"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5738"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Microsoft Virtual Machine */
++		/* Acer Aspire One 150 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Virtual Machine"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "VS2005R2"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "AOA150"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Medion MAM 2070 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Notebook"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "MAM 2070"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "5a"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire A114-31"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Medion Akoya E7225 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Medion"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Akoya E7225"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire A314-31"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Blue FB5601 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "blue"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "FB5601"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "M606"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire A315-31"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Gigabyte M912 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "M912"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "01"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire ES1-132"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Gigabyte M1022M netbook */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co.,Ltd."),
+-			DMI_MATCH(DMI_BOARD_NAME, "M1022E"),
+-			DMI_MATCH(DMI_BOARD_VERSION, "1.02"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire ES1-332"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Gigabyte Spring Peak - defines wrong chassis type */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Spring Peak"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire ES1-432"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Gigabyte T1005 - defines wrong chassis type ("Other") */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "T1005"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate Spin B118-RN"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
++	/*
++	 * Some Wistron based laptops need us to explicitly enable the 'Dritek
++	 * keyboard extension' to make their extra keys start generating scancodes.
++	 * Originally, this was just confined to older laptops, but a few Acer laptops
++	 * have turned up in 2007 that also need this again.
++	 */
+ 	{
+-		/* Gigabyte T1005M/P - defines wrong chassis type ("Other") */
++		/* Acer Aspire 5100 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "T1005M/P"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5100"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
++		/* Acer Aspire 5610 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion dv9700"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "Rev 1"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5610"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
++		/* Acer Aspire 5630 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "PEGATRON CORPORATION"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "C15B"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5630"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
++		/* Acer Aspire 5650 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ByteSpeed LLC"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "ByteSpeed Laptop C15B"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5650"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+-	{ }
+-};
+-
+-/*
+- * Some Fujitsu notebooks are having trouble with touchpads if
+- * active multiplexing mode is activated. Luckily they don't have
+- * external PS/2 ports so we can safely disable it.
+- * ... apparently some Toshibas don't like MUX mode either and
+- * die horrible death on reboot.
+- */
+-static const struct dmi_system_id __initconst i8042_dmi_nomux_table[] = {
+ 	{
+-		/* Fujitsu Lifebook P7010/P7010D */
++		/* Acer Aspire 5680 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "P7010"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5680"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook P7010 */
++		/* Acer Aspire 5720 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "0000000000"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5720"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook P5020D */
++		/* Acer Aspire 9110 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook P Series"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 9110"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook S2000 */
++		/* Acer TravelMate 660 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook S Series"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 660"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook S6230 */
++		/* Acer TravelMate 2490 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook S6230"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 2490"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook T725 laptop */
++		/* Acer TravelMate 4280 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T725"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 4280"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_DRITEK)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook U745 */
++		/* Amoi M636/A737 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK U745"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Amoi Electronics CO.,LTD."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "M636/A737 platform"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Fujitsu T70H */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "FMVLT70H"),
++			DMI_MATCH(DMI_SYS_VENDOR, "ByteSpeed LLC"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "ByteSpeed Laptop C15B"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Fujitsu-Siemens Lifebook T3010 */
++		/* Compal HEL80I */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T3010"),
++			DMI_MATCH(DMI_SYS_VENDOR, "COMPAL"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "HEL80I"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Fujitsu-Siemens Lifebook E4010 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK E4010"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "8500"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Fujitsu-Siemens Amilo Pro 2010 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "AMILO Pro V2010"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "DL760"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Fujitsu-Siemens Amilo Pro 2030 */
++		/* Advent 4211 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "AMILO PRO V2030"),
++			DMI_MATCH(DMI_SYS_VENDOR, "DIXONSXP"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Advent 4211"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/*
+-		 * No data is coming from the touchscreen unless KBC
+-		 * is in legacy mode.
+-		 */
+-		/* Panasonic CF-29 */
++		/* Dell Embedded Box PC 3000 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Matsushita"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "CF-29"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Embedded Box PC 3000"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/*
+-		 * HP Pavilion DV4017EA -
+-		 * errors on MUX ports are reported without raising AUXDATA
+-		 * causing "spurious NAK" messages.
+-		 */
++		/* Dell XPS M1530 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Pavilion dv4000 (EA032EA#ABF)"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "XPS M1530"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/*
+-		 * HP Pavilion ZT1000 -
+-		 * like DV4017EA does not raise AUXERR for errors on MUX ports.
+-		 */
++		/* Dell Vostro 1510 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Notebook PC"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "HP Pavilion Notebook ZT1000"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro1510"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/*
+-		 * HP Pavilion DV4270ca -
+-		 * like DV4017EA does not raise AUXERR for errors on MUX ports.
+-		 */
++		/* Dell Vostro V13 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Pavilion dv4000 (EH476UA#ABL)"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro V13"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_NOTIMEOUT)
+ 	},
+ 	{
++		/* Dell Vostro 1320 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite P10"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 1320"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
++		/* Dell Vostro 1520 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "EQUIUM A110"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 1520"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
++		/* Dell Vostro 1720 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "SATELLITE C850D"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 1720"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
++	},
++	{
++		/* Entroware Proteus */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "Entroware"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Proteus"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "EL07R4"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS)
+ 	},
++	/*
++	 * Some Fujitsu notebooks are having trouble with touchpads if
++	 * active multiplexing mode is activated. Luckily they don't have
++	 * external PS/2 ports so we can safely disable it.
++	 * ... apparently some Toshibas don't like MUX mode either and
++	 * die horrible death on reboot.
++	 */
+ 	{
++		/* Fujitsu Lifebook P7010/P7010D */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ALIENWARE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Sentia"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "P7010"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Sharp Actius MM20 */
++		/* Fujitsu Lifebook P5020D */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "SHARP"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "PC-MM20 Series"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook P Series"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Sony Vaio FS-115b */
++		/* Fujitsu Lifebook S2000 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FS115B"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook S Series"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/*
+-		 * Sony Vaio FZ-240E -
+-		 * reset and GET ID commands issued via KBD port are
+-		 * sometimes being delivered to AUX3.
+-		 */
++		/* Fujitsu Lifebook S6230 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FZ240E"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook S6230"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/*
+-		 * Most (all?) VAIOs do not have external PS/2 ports nor
+-		 * they implement active multiplexing properly, and
+-		 * MUX discovery usually messes up keyboard/touchpad.
+-		 */
++		/* Fujitsu Lifebook T725 laptop */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
+-			DMI_MATCH(DMI_BOARD_NAME, "VAIO"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T725"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_NOTIMEOUT)
+ 	},
+ 	{
+-		/* Amoi M636/A737 */
++		/* Fujitsu Lifebook U745 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Amoi Electronics CO.,LTD."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "M636/A737 platform"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK U745"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Lenovo 3000 n100 */
++		/* Fujitsu T70H */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "076804U"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "FMVLT70H"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Lenovo XiaoXin Air 12 */
++		/* Fujitsu A544 laptop */
++		/* https://bugzilla.redhat.com/show_bug.cgi?id=1111138 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "80UN"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK A544"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOTIMEOUT)
+ 	},
+ 	{
++		/* Fujitsu AH544 laptop */
++		/* https://bugzilla.kernel.org/show_bug.cgi?id=69731 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 1360"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK AH544"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_NOTIMEOUT)
++	},
++	{
++		/* Fujitsu U574 laptop */
++		/* https://bugzilla.kernel.org/show_bug.cgi?id=69731 */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK U574"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_NOTIMEOUT)
++	},
++	{
++		/* Fujitsu UH554 laptop */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK UH544"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_NOTIMEOUT)
++	},
++	{
++		/* Fujitsu Lifebook P7010 */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "0000000000"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
++	},
++	{
++		/* Fujitsu-Siemens Lifebook T3010 */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T3010"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Acer Aspire 5710 */
++		/* Fujitsu-Siemens Lifebook E4010 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5710"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK E4010"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Acer Aspire 7738 */
++		/* Fujitsu-Siemens Amilo Pro 2010 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 7738"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "AMILO Pro V2010"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Gericom Bellagio */
++		/* Fujitsu-Siemens Amilo Pro 2030 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Gericom"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "N34AS6"),
++			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "AMILO PRO V2030"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* IBM 2656 */
++		/* Gigabyte M912 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "2656"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "M912"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "01"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Dell XPS M1530 */
++		/* Gigabyte Spring Peak - defines wrong chassis type */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "XPS M1530"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Spring Peak"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Compal HEL80I */
++		/* Gigabyte T1005 - defines wrong chassis type ("Other") */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "COMPAL"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "HEL80I"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "T1005"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Dell Vostro 1510 */
++		/* Gigabyte T1005M/P - defines wrong chassis type ("Other") */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro1510"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "T1005M/P"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
++	/*
++	 * Some laptops need keyboard reset before probing for the trackpad to get
++	 * it detected, initialised & finally work.
++	 */
+ 	{
+-		/* Acer Aspire 5536 */
++		/* Gigabyte P35 v2 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5536"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "0100"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "P35V2"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_KBDRESET)
+ 	},
+-	{
+-		/* Dell Vostro V13 */
++		{
++		/* Aorus branded Gigabyte X3 Plus - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro V13"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "X3"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_KBDRESET)
+ 	},
+ 	{
+-		/* Newer HP Pavilion dv4 models */
++		/* Gigabyte P34 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion dv4 Notebook PC"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "P34"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_KBDRESET)
+ 	},
+ 	{
+-		/* Asus X450LCP */
++		/* Gigabyte P57 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "X450LCP"),
++			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "P57"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_KBDRESET)
+ 	},
+ 	{
+-		/* Avatar AVIU-145A6 */
++		/* Gericom Bellagio */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Intel"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "IC4I"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Gericom"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "N34AS6"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* TUXEDO BU1406 */
++		/* Gigabyte M1022M netbook */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Notebook"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "N24_25BU"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co.,Ltd."),
++			DMI_MATCH(DMI_BOARD_NAME, "M1022E"),
++			DMI_MATCH(DMI_BOARD_VERSION, "1.02"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Lenovo LaVie Z */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo LaVie Z"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion dv9700"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "Rev 1"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+ 		/*
+-		 * Acer Aspire 5738z
+-		 * Touchpad stops working in mux mode when dis- + re-enabled
+-		 * with the touchpad enable/disable toggle hotkey
++		 * HP Pavilion DV4017EA -
++		 * errors on MUX ports are reported without raising AUXDATA
++		 * causing "spurious NAK" messages.
+ 		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5738"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Pavilion dv4000 (EA032EA#ABF)"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Entroware Proteus */
++		/*
++		 * HP Pavilion ZT1000 -
++		 * like DV4017EA does not raise AUXERR for errors on MUX ports.
++		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Entroware"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Proteus"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "EL07R4"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Notebook PC"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "HP Pavilion Notebook ZT1000"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+-	{ }
+-};
+-
+-static const struct dmi_system_id i8042_dmi_forcemux_table[] __initconst = {
+ 	{
+ 		/*
+-		 * Sony Vaio VGN-CS series require MUX or the touch sensor
+-		 * buttons will disturb touchpad operation
++		 * HP Pavilion DV4270ca -
++		 * like DV4017EA does not raise AUXERR for errors on MUX ports.
+ 		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "VGN-CS"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Pavilion dv4000 (EH476UA#ABL)"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+-	{ }
+-};
+-
+-/*
+- * On some Asus laptops, just running self tests cause problems.
+- */
+-static const struct dmi_system_id i8042_dmi_noselftest_table[] = {
+ 	{
++		/* Newer HP Pavilion dv4 models */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
+-			DMI_MATCH(DMI_CHASSIS_TYPE, "10"), /* Notebook */
+-		},
+-	}, {
+-		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
+-			DMI_MATCH(DMI_CHASSIS_TYPE, "31"), /* Convertible Notebook */
++			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion dv4 Notebook PC"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_NOTIMEOUT)
+ 	},
+-	{ }
+-};
+-static const struct dmi_system_id __initconst i8042_dmi_reset_table[] = {
+ 	{
+-		/* MSI Wind U-100 */
++		/* IBM 2656 */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_NAME, "U-100"),
+-			DMI_MATCH(DMI_BOARD_VENDOR, "MICRO-STAR INTERNATIONAL CO., LTD"),
++			DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "2656"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* LG Electronics X110 */
++		/* Avatar AVIU-145A6 */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_NAME, "X110"),
+-			DMI_MATCH(DMI_BOARD_VENDOR, "LG Electronics Inc."),
++			DMI_MATCH(DMI_SYS_VENDOR, "Intel"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "IC4I"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Acer Aspire One 150 */
++		/* Intel MBO Desktop D845PESV */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "AOA150"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "Intel Corporation"),
++			DMI_MATCH(DMI_BOARD_NAME, "D845PESV"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
++		/*
++		 * Intel NUC D54250WYK - does not have i8042 controller but
++		 * declares PS/2 devices in DSDT.
++		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire A114-31"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "Intel Corporation"),
++			DMI_MATCH(DMI_BOARD_NAME, "D54250WYK"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
++		/* Lenovo 3000 n100 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire A314-31"),
++			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "076804U"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
++		/* Lenovo XiaoXin Air 12 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire A315-31"),
++			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "80UN"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
++		/* Lenovo LaVie Z */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire ES1-132"),
++			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo LaVie Z"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
++		/* Lenovo Ideapad U455 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire ES1-332"),
++			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "20046"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
++		/* Lenovo ThinkPad L460 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire ES1-432"),
++			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "ThinkPad L460"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
++		/* Lenovo ThinkPad Twist S230u */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate Spin B118-RN"),
++			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "33474HU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Advent 4211 */
++		/* LG Electronics X110 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "DIXONSXP"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Advent 4211"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "LG Electronics Inc."),
++			DMI_MATCH(DMI_BOARD_NAME, "X110"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+ 		/* Medion Akoya Mini E1210 */
+@@ -684,6 +839,7 @@ static const struct dmi_system_id __initconst i8042_dmi_reset_table[] = {
+ 			DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
+ 			DMI_MATCH(DMI_PRODUCT_NAME, "E1210"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+ 		/* Medion Akoya E1222 */
+@@ -691,48 +847,62 @@ static const struct dmi_system_id __initconst i8042_dmi_reset_table[] = {
+ 			DMI_MATCH(DMI_SYS_VENDOR, "MEDION"),
+ 			DMI_MATCH(DMI_PRODUCT_NAME, "E122X"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
+ 	{
+-		/* Mivvy M310 */
++		/* MSI Wind U-100 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "VIOOO"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "N10"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "MICRO-STAR INTERNATIONAL CO., LTD"),
++			DMI_MATCH(DMI_BOARD_NAME, "U-100"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Dell Vostro 1320 */
++		/*
++		 * No data is coming from the touchscreen unless KBC
++		 * is in legacy mode.
++		 */
++		/* Panasonic CF-29 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 1320"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Matsushita"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "CF-29"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Dell Vostro 1520 */
++		/* Medion Akoya E7225 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 1520"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Medion"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Akoya E7225"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Dell Vostro 1720 */
++		/* Microsoft Virtual Machine */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 1720"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Virtual Machine"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "VS2005R2"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Lenovo Ideapad U455 */
++		/* Medion MAM 2070 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "20046"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Notebook"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "MAM 2070"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "5a"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Lenovo ThinkPad L460 */
++		/* TUXEDO BU1406 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "ThinkPad L460"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Notebook"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "N24_25BU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+ 		/* Clevo P650RS, 650RP6, Sager NP8152-S, and others */
+@@ -740,282 +910,318 @@ static const struct dmi_system_id __initconst i8042_dmi_reset_table[] = {
+ 			DMI_MATCH(DMI_SYS_VENDOR, "Notebook"),
+ 			DMI_MATCH(DMI_PRODUCT_NAME, "P65xRP"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
++	},
++	{
++		/* OQO Model 01 */
++		.matches = {
++			DMI_MATCH(DMI_SYS_VENDOR, "OQO"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "ZEPTO"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "00"),
++		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Lenovo ThinkPad Twist S230u */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "33474HU"),
++			DMI_MATCH(DMI_SYS_VENDOR, "PEGATRON CORPORATION"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "C15B"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* Entroware Proteus */
++		/* Acer Aspire 5 A515 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Entroware"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Proteus"),
+-			DMI_MATCH(DMI_PRODUCT_VERSION, "EL07R4"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "PK"),
++			DMI_MATCH(DMI_BOARD_NAME, "Grumpy_PK"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOPNP)
+ 	},
+-	{ }
+-};
+-
+-#ifdef CONFIG_PNP
+-static const struct dmi_system_id __initconst i8042_dmi_nopnp_table[] = {
+ 	{
+-		/* Intel MBO Desktop D845PESV */
++		/* ULI EV4873 - AUX LOOP does not work properly */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_NAME, "D845PESV"),
+-			DMI_MATCH(DMI_BOARD_VENDOR, "Intel Corporation"),
++			DMI_MATCH(DMI_SYS_VENDOR, "ULI"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "EV4873"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "5a"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+ 		/*
+-		 * Intel NUC D54250WYK - does not have i8042 controller but
+-		 * declares PS/2 devices in DSDT.
++		 * Arima-Rioworks HDAMB -
++		 * AUX LOOP command does not raise AUX IRQ
+ 		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_NAME, "D54250WYK"),
+-			DMI_MATCH(DMI_BOARD_VENDOR, "Intel Corporation"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "RIOWORKS"),
++			DMI_MATCH(DMI_BOARD_NAME, "HDAMB"),
++			DMI_MATCH(DMI_BOARD_VERSION, "Rev E"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+ 	{
+-		/* MSI Wind U-100 */
++		/* Sharp Actius MM20 */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_NAME, "U-100"),
+-			DMI_MATCH(DMI_BOARD_VENDOR, "MICRO-STAR INTERNATIONAL CO., LTD"),
++			DMI_MATCH(DMI_SYS_VENDOR, "SHARP"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "PC-MM20 Series"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Acer Aspire 5 A515 */
++		/*
++		 * Sony Vaio FZ-240E -
++		 * reset and GET ID commands issued via KBD port are
++		 * sometimes being delivered to AUX3.
++		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_BOARD_NAME, "Grumpy_PK"),
+-			DMI_MATCH(DMI_BOARD_VENDOR, "PK"),
++			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FZ240E"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+-	{ }
+-};
+-
+-static const struct dmi_system_id __initconst i8042_dmi_laptop_table[] = {
+ 	{
++		/*
++		 * Most (all?) VAIOs do not have external PS/2 ports nor
++		 * they implement active multiplexing properly, and
++		 * MUX discovery usually messes up keyboard/touchpad.
++		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_CHASSIS_TYPE, "8"), /* Portable */
++			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
++			DMI_MATCH(DMI_BOARD_NAME, "VAIO"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
++		/* Sony Vaio FS-115b */
+ 		.matches = {
+-			DMI_MATCH(DMI_CHASSIS_TYPE, "9"), /* Laptop */
++			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FS115B"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
++		/*
++		 * Sony Vaio VGN-CS series require MUX or the touch sensor
++		 * buttons will disturb touchpad operation
++		 */
+ 		.matches = {
+-			DMI_MATCH(DMI_CHASSIS_TYPE, "10"), /* Notebook */
++			DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "VGN-CS"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_FORCEMUX)
+ 	},
+ 	{
+ 		.matches = {
+-			DMI_MATCH(DMI_CHASSIS_TYPE, "14"), /* Sub-Notebook */
++			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite P10"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+-	{ }
+-};
+-#endif
+-
+-static const struct dmi_system_id __initconst i8042_dmi_notimeout_table[] = {
+ 	{
+-		/* Dell Vostro V13 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Vostro V13"),
++			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "EQUIUM A110"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
+ 	{
+-		/* Newer HP Pavilion dv4 models */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion dv4 Notebook PC"),
++			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "SATELLITE C850D"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX)
+ 	},
++	/*
++	 * A lot of modern Clevo barebones have touchpad and/or keyboard issues
++	 * after suspend fixable with nomux + reset + noloop + nopnp. Luckily,
++	 * none of them have an external PS/2 port so this can safely be set for
++	 * all of them. These two are based on a Clevo design, but have the
++	 * board_name changed.
++	 */
+ 	{
+-		/* Fujitsu A544 laptop */
+-		/* https://bugzilla.redhat.com/show_bug.cgi?id=1111138 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK A544"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "TUXEDO"),
++			DMI_MATCH(DMI_BOARD_NAME, "AURA1501"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Fujitsu AH544 laptop */
+-		/* https://bugzilla.kernel.org/show_bug.cgi?id=69731 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK AH544"),
++			DMI_MATCH(DMI_BOARD_VENDOR, "TUXEDO"),
++			DMI_MATCH(DMI_BOARD_NAME, "EDUBOOK1502"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Fujitsu Lifebook T725 laptop */
++		/* Mivvy M310 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T725"),
++			DMI_MATCH(DMI_SYS_VENDOR, "VIOOO"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "N10"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_RESET_ALWAYS)
+ 	},
++	/*
++	 * Some laptops need keyboard reset before probing for the trackpad to get
++	 * it detected, initialised & finally work.
++	 */
+ 	{
+-		/* Fujitsu U574 laptop */
+-		/* https://bugzilla.kernel.org/show_bug.cgi?id=69731 */
++		/* Schenker XMG C504 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK U574"),
++			DMI_MATCH(DMI_SYS_VENDOR, "XMG"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "C504"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_KBDRESET)
+ 	},
+ 	{
+-		/* Fujitsu UH554 laptop */
++		/* Blue FB5601 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK UH544"),
++			DMI_MATCH(DMI_SYS_VENDOR, "blue"),
++			DMI_MATCH(DMI_PRODUCT_NAME, "FB5601"),
++			DMI_MATCH(DMI_PRODUCT_VERSION, "M606"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOLOOP)
+ 	},
+-	{ }
+-};
+-
+-/*
+- * Some Wistron based laptops need us to explicitly enable the 'Dritek
+- * keyboard extension' to make their extra keys start generating scancodes.
+- * Originally, this was just confined to older laptops, but a few Acer laptops
+- * have turned up in 2007 that also need this again.
+- */
+-static const struct dmi_system_id __initconst i8042_dmi_dritek_table[] = {
++	/*
++	 * A lot of modern Clevo barebones have touchpad and/or keyboard issues
++	 * after suspend fixable with nomux + reset + noloop + nopnp. Luckily,
++	 * none of them have an external PS/2 port so this can safely be set for
++	 * all of them.
++	 * Clevo barebones come with board_vendor and/or system_vendor set to
++	 * either the very generic string "Notebook" and/or a different value
++	 * for each individual reseller. The only somewhat universal way to
++	 * identify them is by board_name.
++	 */
+ 	{
+-		/* Acer Aspire 5100 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5100"),
++			DMI_MATCH(DMI_BOARD_NAME, "LAPQC71A"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer Aspire 5610 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5610"),
++			DMI_MATCH(DMI_BOARD_NAME, "LAPQC71B"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer Aspire 5630 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5630"),
++			DMI_MATCH(DMI_BOARD_NAME, "N140CU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer Aspire 5650 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5650"),
++			DMI_MATCH(DMI_BOARD_NAME, "N141CU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer Aspire 5680 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5680"),
++			DMI_MATCH(DMI_BOARD_NAME, "NH5xAx"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer Aspire 5720 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5720"),
++			DMI_MATCH(DMI_BOARD_NAME, "NL5xRU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
++	/*
++	 * At least one modern Clevo barebone has the touchpad connected both
++	 * via PS/2 and i2c interface. This causes a race condition between the
++	 * psmouse and i2c-hid driver. Since the full capability of the touchpad
++	 * is available via the i2c interface and the device has no external
++	 * PS/2 port, it is safe to just ignore all ps2 mouses here to avoid
++	 * this issue. The known affected device is the
++	 * TUXEDO InfinityBook S17 Gen6 / Clevo NS70MU which comes with one of
++	 * the two different dmi strings below. NS50MU is not a typo!
++	 */
+ 	{
+-		/* Acer Aspire 9110 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 9110"),
++			DMI_MATCH(DMI_BOARD_NAME, "NS50MU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOAUX | SERIO_QUIRK_NOMUX |
++					SERIO_QUIRK_RESET_ALWAYS | SERIO_QUIRK_NOLOOP |
++					SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer TravelMate 660 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 660"),
++			DMI_MATCH(DMI_BOARD_NAME, "NS50_70MU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOAUX | SERIO_QUIRK_NOMUX |
++					SERIO_QUIRK_RESET_ALWAYS | SERIO_QUIRK_NOLOOP |
++					SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer TravelMate 2490 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 2490"),
++			DMI_MATCH(DMI_BOARD_NAME, "NJ50_70CU"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Acer TravelMate 4280 */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 4280"),
++			DMI_MATCH(DMI_BOARD_NAME, "PB50_70DFx,DDx"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+-	{ }
+-};
+-
+-/*
+- * Some laptops need keyboard reset before probing for the trackpad to get
+- * it detected, initialised & finally work.
+- */
+-static const struct dmi_system_id __initconst i8042_dmi_kbdreset_table[] = {
+ 	{
+-		/* Gigabyte P35 v2 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "P35V2"),
++			DMI_MATCH(DMI_BOARD_NAME, "PCX0DX"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+-		{
+-		/* Aorus branded Gigabyte X3 Plus - Elantech touchpad */
++	{
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "X3"),
++			DMI_MATCH(DMI_BOARD_NAME, "X170SM"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
+ 	{
+-		/* Gigabyte P34 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "P34"),
++			DMI_MATCH(DMI_BOARD_NAME, "X170KM-G"),
+ 		},
++		.driver_data = (void *)(SERIO_QUIRK_NOMUX | SERIO_QUIRK_RESET_ALWAYS |
++					SERIO_QUIRK_NOLOOP | SERIO_QUIRK_NOPNP)
+ 	},
++	{ }
++};
++
++#ifdef CONFIG_PNP
++static const struct dmi_system_id i8042_dmi_laptop_table[] __initconst = {
+ 	{
+-		/* Gigabyte P57 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "GIGABYTE"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "P57"),
++			DMI_MATCH(DMI_CHASSIS_TYPE, "8"), /* Portable */
+ 		},
+ 	},
+ 	{
+-		/* Schenker XMG C504 - Elantech touchpad */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "XMG"),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "C504"),
++			DMI_MATCH(DMI_CHASSIS_TYPE, "9"), /* Laptop */
+ 		},
+ 	},
+-	{ }
+-};
+-
+-static const struct dmi_system_id i8042_dmi_probe_defer_table[] __initconst = {
+ 	{
+-		/* ASUS ZenBook UX425UA */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "ZenBook UX425UA"),
++			DMI_MATCH(DMI_CHASSIS_TYPE, "10"), /* Notebook */
+ 		},
+ 	},
+ 	{
+-		/* ASUS ZenBook UM325UA */
+ 		.matches = {
+-			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
+-			DMI_MATCH(DMI_PRODUCT_NAME, "ZenBook UX325UA_UM325UA"),
++			DMI_MATCH(DMI_CHASSIS_TYPE, "14"), /* Sub-Notebook */
+ 		},
+ 	},
+ 	{ }
+ };
++#endif
+ 
+ #endif /* CONFIG_X86 */
+ 
+@@ -1170,11 +1376,6 @@ static int __init i8042_pnp_init(void)
+ 	bool pnp_data_busted = false;
+ 	int err;
+ 
+-#ifdef CONFIG_X86
+-	if (dmi_check_system(i8042_dmi_nopnp_table))
+-		i8042_nopnp = true;
+-#endif
+-
+ 	if (i8042_nopnp) {
+ 		pr_info("PNP detection disabled\n");
+ 		return 0;
+@@ -1278,6 +1479,59 @@ static inline int i8042_pnp_init(void) { return 0; }
+ static inline void i8042_pnp_exit(void) { }
+ #endif /* CONFIG_PNP */
+ 
++
++#ifdef CONFIG_X86
++static void __init i8042_check_quirks(void)
++{
++	const struct dmi_system_id *device_quirk_info;
++	uintptr_t quirks;
++
++	device_quirk_info = dmi_first_match(i8042_dmi_quirk_table);
++	if (!device_quirk_info)
++		return;
++
++	quirks = (uintptr_t)device_quirk_info->driver_data;
++
++	if (quirks & SERIO_QUIRK_NOKBD)
++		i8042_nokbd = true;
++	if (quirks & SERIO_QUIRK_NOAUX)
++		i8042_noaux = true;
++	if (quirks & SERIO_QUIRK_NOMUX)
++		i8042_nomux = true;
++	if (quirks & SERIO_QUIRK_FORCEMUX)
++		i8042_nomux = false;
++	if (quirks & SERIO_QUIRK_UNLOCK)
++		i8042_unlock = true;
++	if (quirks & SERIO_QUIRK_PROBE_DEFER)
++		i8042_probe_defer = true;
++	/* Honor module parameter when value is not default */
++	if (i8042_reset == I8042_RESET_DEFAULT) {
++		if (quirks & SERIO_QUIRK_RESET_ALWAYS)
++			i8042_reset = I8042_RESET_ALWAYS;
++		if (quirks & SERIO_QUIRK_RESET_NEVER)
++			i8042_reset = I8042_RESET_NEVER;
++	}
++	if (quirks & SERIO_QUIRK_DIECT)
++		i8042_direct = true;
++	if (quirks & SERIO_QUIRK_DUMBKBD)
++		i8042_dumbkbd = true;
++	if (quirks & SERIO_QUIRK_NOLOOP)
++		i8042_noloop = true;
++	if (quirks & SERIO_QUIRK_NOTIMEOUT)
++		i8042_notimeout = true;
++	if (quirks & SERIO_QUIRK_KBDRESET)
++		i8042_kbdreset = true;
++	if (quirks & SERIO_QUIRK_DRITEK)
++		i8042_dritek = true;
++#ifdef CONFIG_PNP
++	if (quirks & SERIO_QUIRK_NOPNP)
++		i8042_nopnp = true;
++#endif
++}
++#else
++static inline void i8042_check_quirks(void) {}
++#endif
++
+ static int __init i8042_platform_init(void)
+ {
+ 	int retval;
+@@ -1300,45 +1554,17 @@ static int __init i8042_platform_init(void)
+ 	i8042_kbd_irq = I8042_MAP_IRQ(1);
+ 	i8042_aux_irq = I8042_MAP_IRQ(12);
+ 
+-	retval = i8042_pnp_init();
+-	if (retval)
+-		return retval;
+-
+ #if defined(__ia64__)
+-        i8042_reset = I8042_RESET_ALWAYS;
++	i8042_reset = I8042_RESET_ALWAYS;
+ #endif
+ 
+-#ifdef CONFIG_X86
+-	/* Honor module parameter when value is not default */
+-	if (i8042_reset == I8042_RESET_DEFAULT) {
+-		if (dmi_check_system(i8042_dmi_reset_table))
+-			i8042_reset = I8042_RESET_ALWAYS;
+-
+-		if (dmi_check_system(i8042_dmi_noselftest_table))
+-			i8042_reset = I8042_RESET_NEVER;
+-	}
+-
+-	if (dmi_check_system(i8042_dmi_noloop_table))
+-		i8042_noloop = true;
+-
+-	if (dmi_check_system(i8042_dmi_nomux_table))
+-		i8042_nomux = true;
+-
+-	if (dmi_check_system(i8042_dmi_forcemux_table))
+-		i8042_nomux = false;
+-
+-	if (dmi_check_system(i8042_dmi_notimeout_table))
+-		i8042_notimeout = true;
+-
+-	if (dmi_check_system(i8042_dmi_dritek_table))
+-		i8042_dritek = true;
+-
+-	if (dmi_check_system(i8042_dmi_kbdreset_table))
+-		i8042_kbdreset = true;
++	i8042_check_quirks();
+ 
+-	if (dmi_check_system(i8042_dmi_probe_defer_table))
+-		i8042_probe_defer = true;
++	retval = i8042_pnp_init();
++	if (retval)
++		return retval;
+ 
++#ifdef CONFIG_X86
+ 	/*
+ 	 * A20 was already enabled during early kernel init. But some buggy
+ 	 * BIOSes (in MSI Laptops) require A20 to be enabled using 8042 to
+diff --git a/drivers/mmc/core/sdio_bus.c b/drivers/mmc/core/sdio_bus.c
+index 8aebdc4ff623a..dd73e8e83c726 100644
+--- a/drivers/mmc/core/sdio_bus.c
++++ b/drivers/mmc/core/sdio_bus.c
+@@ -267,6 +267,12 @@ static void sdio_release_func(struct device *dev)
+ 	if (!(func->card->quirks & MMC_QUIRK_NONSTD_SDIO))
+ 		sdio_free_func_cis(func);
+ 
++	/*
++	 * We have now removed the link to the tuples in the
++	 * card structure, so remove the reference.
++	 */
++	put_device(&func->card->dev);
++
+ 	kfree(func->info);
+ 	kfree(func->tmpbuf);
+ 	kfree(func);
+@@ -297,6 +303,12 @@ struct sdio_func *sdio_alloc_func(struct mmc_card *card)
+ 
+ 	device_initialize(&func->dev);
+ 
++	/*
++	 * We may link to tuples in the card structure,
++	 * we need make sure we have a reference to it.
++	 */
++	get_device(&func->card->dev);
++
+ 	func->dev.parent = &card->dev;
+ 	func->dev.bus = &sdio_bus_type;
+ 	func->dev.release = sdio_release_func;
+@@ -350,10 +362,9 @@ int sdio_add_func(struct sdio_func *func)
+  */
+ void sdio_remove_func(struct sdio_func *func)
+ {
+-	if (!sdio_func_present(func))
+-		return;
++	if (sdio_func_present(func))
++		device_del(&func->dev);
+ 
+-	device_del(&func->dev);
+ 	of_node_put(func->dev.of_node);
+ 	put_device(&func->dev);
+ }
+diff --git a/drivers/mmc/core/sdio_cis.c b/drivers/mmc/core/sdio_cis.c
+index dca72444b3122..f741eb24c3de8 100644
+--- a/drivers/mmc/core/sdio_cis.c
++++ b/drivers/mmc/core/sdio_cis.c
+@@ -387,12 +387,6 @@ int sdio_read_func_cis(struct sdio_func *func)
+ 	if (ret)
+ 		return ret;
+ 
+-	/*
+-	 * Since we've linked to tuples in the card structure,
+-	 * we must make sure we have a reference to it.
+-	 */
+-	get_device(&func->card->dev);
+-
+ 	/*
+ 	 * Vendor/device id is optional for function CIS, so
+ 	 * copy it from the card structure as needed.
+@@ -418,11 +412,5 @@ void sdio_free_func_cis(struct sdio_func *func)
+ 	}
+ 
+ 	func->tuples = NULL;
+-
+-	/*
+-	 * We have now removed the link to the tuples in the
+-	 * card structure, so remove the reference.
+-	 */
+-	put_device(&func->card->dev);
+ }
+ 
+diff --git a/drivers/net/ethernet/broadcom/bgmac-bcma.c b/drivers/net/ethernet/broadcom/bgmac-bcma.c
+index 77de92eb08b21..b880c0b964beb 100644
+--- a/drivers/net/ethernet/broadcom/bgmac-bcma.c
++++ b/drivers/net/ethernet/broadcom/bgmac-bcma.c
+@@ -228,12 +228,12 @@ static int bgmac_probe(struct bcma_device *core)
+ 		bgmac->feature_flags |= BGMAC_FEAT_CLKCTLST;
+ 		bgmac->feature_flags |= BGMAC_FEAT_FLW_CTRL1;
+ 		bgmac->feature_flags |= BGMAC_FEAT_SW_TYPE_PHY;
+-		if (ci->pkg == BCMA_PKG_ID_BCM47188 ||
+-		    ci->pkg == BCMA_PKG_ID_BCM47186) {
++		if ((ci->id == BCMA_CHIP_ID_BCM5357 && ci->pkg == BCMA_PKG_ID_BCM47186) ||
++		    (ci->id == BCMA_CHIP_ID_BCM53572 && ci->pkg == BCMA_PKG_ID_BCM47188)) {
+ 			bgmac->feature_flags |= BGMAC_FEAT_SW_TYPE_RGMII;
+ 			bgmac->feature_flags |= BGMAC_FEAT_IOST_ATTACHED;
+ 		}
+-		if (ci->pkg == BCMA_PKG_ID_BCM5358)
++		if (ci->id == BCMA_CHIP_ID_BCM5357 && ci->pkg == BCMA_PKG_ID_BCM5358)
+ 			bgmac->feature_flags |= BGMAC_FEAT_SW_TYPE_EPHYRMII;
+ 		break;
+ 	case BCMA_CHIP_ID_BCM53573:
+diff --git a/drivers/net/ethernet/broadcom/bnxt/bnxt.c b/drivers/net/ethernet/broadcom/bnxt/bnxt.c
+index dc106212259a5..d79281c6d915d 100644
+--- a/drivers/net/ethernet/broadcom/bnxt/bnxt.c
++++ b/drivers/net/ethernet/broadcom/bnxt/bnxt.c
+@@ -6118,10 +6118,14 @@ int bnxt_reserve_rings(struct bnxt *bp)
+ 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
+ 		return rc;
+ 	}
+-	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
++	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
++		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
+ 		netdev_err(bp->dev, "tx ring reservation failure\n");
+ 		netdev_reset_tc(bp->dev);
+-		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
++		if (bp->tx_nr_rings_xdp)
++			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
++		else
++			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
+ 		return -ENOMEM;
+ 	}
+ 	bp->num_stat_ctxs = bp->cp_nr_rings;
+diff --git a/drivers/net/ethernet/intel/i40e/i40e_main.c b/drivers/net/ethernet/intel/i40e/i40e_main.c
+index 8a5baaf403ae8..795f8fe2570e4 100644
+--- a/drivers/net/ethernet/intel/i40e/i40e_main.c
++++ b/drivers/net/ethernet/intel/i40e/i40e_main.c
+@@ -2671,7 +2671,7 @@ static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
+ 	struct i40e_pf *pf = vsi->back;
+ 
+ 	if (i40e_enabled_xdp_vsi(vsi)) {
+-		int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
++		int frame_size = new_mtu + I40E_PACKET_HDR_PAD;
+ 
+ 		if (frame_size > i40e_max_xdp_frame_size(vsi))
+ 			return -EINVAL;
+@@ -11834,6 +11834,8 @@ static int i40e_ndo_bridge_setlink(struct net_device *dev,
+ 	}
+ 
+ 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
++	if (!br_spec)
++		return -EINVAL;
+ 
+ 	nla_for_each_nested(attr, br_spec, rem) {
+ 		__u16 mode;
+diff --git a/drivers/net/ethernet/stmicro/stmmac/dwmac5.c b/drivers/net/ethernet/stmicro/stmmac/dwmac5.c
+index e436fa160c7d6..59165c0560d74 100644
+--- a/drivers/net/ethernet/stmicro/stmmac/dwmac5.c
++++ b/drivers/net/ethernet/stmicro/stmmac/dwmac5.c
+@@ -520,9 +520,9 @@ int dwmac5_flex_pps_config(void __iomem *ioaddr, int index,
+ 		return 0;
+ 	}
+ 
+-	val |= PPSCMDx(index, 0x2);
+ 	val |= TRGTMODSELx(index, 0x2);
+ 	val |= PPSEN0;
++	writel(val, ioaddr + MAC_PPS_CONTROL);
+ 
+ 	writel(cfg->start.tv_sec, ioaddr + MAC_PPSx_TARGET_TIME_SEC(index));
+ 
+@@ -547,6 +547,7 @@ int dwmac5_flex_pps_config(void __iomem *ioaddr, int index,
+ 	writel(period - 1, ioaddr + MAC_PPSx_WIDTH(index));
+ 
+ 	/* Finally, activate it */
++	val |= PPSCMDx(index, 0x2);
+ 	writel(val, ioaddr + MAC_PPS_CONTROL);
+ 	return 0;
+ }
+diff --git a/drivers/net/ethernet/stmicro/stmmac/stmmac_platform.c b/drivers/net/ethernet/stmicro/stmmac/stmmac_platform.c
+index 9e040eb629ed2..f57761a03622b 100644
+--- a/drivers/net/ethernet/stmicro/stmmac/stmmac_platform.c
++++ b/drivers/net/ethernet/stmicro/stmmac/stmmac_platform.c
+@@ -518,7 +518,7 @@ stmmac_probe_config_dt(struct platform_device *pdev, const char **mac)
+ 	dma_cfg->mixed_burst = of_property_read_bool(np, "snps,mixed-burst");
+ 
+ 	plat->force_thresh_dma_mode = of_property_read_bool(np, "snps,force_thresh_dma_mode");
+-	if (plat->force_thresh_dma_mode) {
++	if (plat->force_thresh_dma_mode && plat->force_sf_dma_mode) {
+ 		plat->force_sf_dma_mode = 0;
+ 		pr_warn("force_sf_dma_mode is ignored if force_thresh_dma_mode is set.");
+ 	}
+diff --git a/drivers/net/phy/meson-gxl.c b/drivers/net/phy/meson-gxl.c
+index 7ceebbc4bcc21..75546829b86be 100644
+--- a/drivers/net/phy/meson-gxl.c
++++ b/drivers/net/phy/meson-gxl.c
+@@ -246,11 +246,26 @@ static struct phy_driver meson_gxl_phy[] = {
+ 		.config_intr	= meson_gxl_config_intr,
+ 		.suspend        = genphy_suspend,
+ 		.resume         = genphy_resume,
++		.read_mmd	= genphy_read_mmd_unsupported,
++		.write_mmd	= genphy_write_mmd_unsupported,
++	}, {
++		PHY_ID_MATCH_EXACT(0x01803301),
++		.name		= "Meson G12A Internal PHY",
++		.features	= PHY_BASIC_FEATURES,
++		.flags		= PHY_IS_INTERNAL,
++		.soft_reset     = genphy_soft_reset,
++		.ack_interrupt	= meson_gxl_ack_interrupt,
++		.config_intr	= meson_gxl_config_intr,
++		.suspend        = genphy_suspend,
++		.resume         = genphy_resume,
++		.read_mmd	= genphy_read_mmd_unsupported,
++		.write_mmd	= genphy_write_mmd_unsupported,
+ 	},
+ };
+ 
+ static struct mdio_device_id __maybe_unused meson_gxl_tbl[] = {
+ 	{ 0x01814400, 0xfffffff0 },
++	{ PHY_ID_MATCH_VENDOR(0x01803301) },
+ 	{ }
+ };
+ 
+diff --git a/drivers/net/usb/kalmia.c b/drivers/net/usb/kalmia.c
+index 0cc6993c279a2..93ee909c79395 100644
+--- a/drivers/net/usb/kalmia.c
++++ b/drivers/net/usb/kalmia.c
+@@ -69,8 +69,8 @@ kalmia_send_init_packet(struct usbnet *dev, u8 *init_msg, u8 init_msg_len,
+ 		init_msg, init_msg_len, &act_len, KALMIA_USB_TIMEOUT);
+ 	if (status != 0) {
+ 		netdev_err(dev->net,
+-			"Error sending init packet. Status %i, length %i\n",
+-			status, act_len);
++			"Error sending init packet. Status %i\n",
++			status);
+ 		return status;
+ 	}
+ 	else if (act_len != init_msg_len) {
+@@ -87,8 +87,8 @@ kalmia_send_init_packet(struct usbnet *dev, u8 *init_msg, u8 init_msg_len,
+ 
+ 	if (status != 0)
+ 		netdev_err(dev->net,
+-			"Error receiving init result. Status %i, length %i\n",
+-			status, act_len);
++			"Error receiving init result. Status %i\n",
++			status);
+ 	else if (act_len != expected_len)
+ 		netdev_err(dev->net, "Unexpected init result length: %i\n",
+ 			act_len);
+diff --git a/drivers/net/usb/plusb.c b/drivers/net/usb/plusb.c
+index 6fe59373cba9b..8bab7306e5a68 100644
+--- a/drivers/net/usb/plusb.c
++++ b/drivers/net/usb/plusb.c
+@@ -69,9 +69,7 @@
+ static inline int
+ pl_vendor_req(struct usbnet *dev, u8 req, u8 val, u8 index)
+ {
+-	return usbnet_read_cmd(dev, req,
+-				USB_DIR_IN | USB_TYPE_VENDOR |
+-				USB_RECIP_DEVICE,
++	return usbnet_write_cmd(dev, req, USB_TYPE_VENDOR | USB_RECIP_DEVICE,
+ 				val, index, NULL, 0);
+ }
+ 
+diff --git a/drivers/nvme/target/fc.c b/drivers/nvme/target/fc.c
+index 77e4d184bc995..68d128b895abd 100644
+--- a/drivers/nvme/target/fc.c
++++ b/drivers/nvme/target/fc.c
+@@ -1325,8 +1325,10 @@ nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
+ 		else {
+ 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
+ 					be16_to_cpu(rqst->assoc_cmd.sqsize));
+-			if (!queue)
++			if (!queue) {
+ 				ret = VERR_QUEUE_ALLOC_FAIL;
++				nvmet_fc_tgt_a_put(iod->assoc);
++			}
+ 		}
+ 	}
+ 
+diff --git a/drivers/pinctrl/aspeed/pinctrl-aspeed.c b/drivers/pinctrl/aspeed/pinctrl-aspeed.c
+index 8dec302dc067a..a95289b5e6bf2 100644
+--- a/drivers/pinctrl/aspeed/pinctrl-aspeed.c
++++ b/drivers/pinctrl/aspeed/pinctrl-aspeed.c
+@@ -295,7 +295,7 @@ static int aspeed_disable_sig(const struct aspeed_sig_expr **exprs,
+ 	int ret = 0;
+ 
+ 	if (!exprs)
+-		return true;
++		return -EINVAL;
+ 
+ 	while (*exprs && !ret) {
+ 		ret = aspeed_sig_expr_disable(*exprs, maps);
+diff --git a/drivers/pinctrl/intel/pinctrl-intel.c b/drivers/pinctrl/intel/pinctrl-intel.c
+index f9eb37bb39051..b786d9797f404 100644
+--- a/drivers/pinctrl/intel/pinctrl-intel.c
++++ b/drivers/pinctrl/intel/pinctrl-intel.c
+@@ -116,7 +116,7 @@ struct intel_pinctrl {
+ #define padgroup_offset(g, p)	((p) - (g)->base)
+ 
+ static struct intel_community *intel_get_community(struct intel_pinctrl *pctrl,
+-						   unsigned pin)
++						   unsigned int pin)
+ {
+ 	struct intel_community *community;
+ 	int i;
+@@ -134,7 +134,7 @@ static struct intel_community *intel_get_community(struct intel_pinctrl *pctrl,
+ 
+ static const struct intel_padgroup *
+ intel_community_get_padgroup(const struct intel_community *community,
+-			     unsigned pin)
++			     unsigned int pin)
+ {
+ 	int i;
+ 
+@@ -148,11 +148,11 @@ intel_community_get_padgroup(const struct intel_community *community,
+ 	return NULL;
+ }
+ 
+-static void __iomem *intel_get_padcfg(struct intel_pinctrl *pctrl, unsigned pin,
+-				      unsigned reg)
++static void __iomem *intel_get_padcfg(struct intel_pinctrl *pctrl,
++				      unsigned int pin, unsigned int reg)
+ {
+ 	const struct intel_community *community;
+-	unsigned padno;
++	unsigned int padno;
+ 	size_t nregs;
+ 
+ 	community = intel_get_community(pctrl, pin);
+@@ -168,11 +168,11 @@ static void __iomem *intel_get_padcfg(struct intel_pinctrl *pctrl, unsigned pin,
+ 	return community->pad_regs + reg + padno * nregs * 4;
+ }
+ 
+-static bool intel_pad_owned_by_host(struct intel_pinctrl *pctrl, unsigned pin)
++static bool intel_pad_owned_by_host(struct intel_pinctrl *pctrl, unsigned int pin)
+ {
+ 	const struct intel_community *community;
+ 	const struct intel_padgroup *padgrp;
+-	unsigned gpp, offset, gpp_offset;
++	unsigned int gpp, offset, gpp_offset;
+ 	void __iomem *padown;
+ 
+ 	community = intel_get_community(pctrl, pin);
+@@ -193,11 +193,11 @@ static bool intel_pad_owned_by_host(struct intel_pinctrl *pctrl, unsigned pin)
+ 	return !(readl(padown) & PADOWN_MASK(gpp_offset));
+ }
+ 
+-static bool intel_pad_acpi_mode(struct intel_pinctrl *pctrl, unsigned pin)
++static bool intel_pad_acpi_mode(struct intel_pinctrl *pctrl, unsigned int pin)
+ {
+ 	const struct intel_community *community;
+ 	const struct intel_padgroup *padgrp;
+-	unsigned offset, gpp_offset;
++	unsigned int offset, gpp_offset;
+ 	void __iomem *hostown;
+ 
+ 	community = intel_get_community(pctrl, pin);
+@@ -217,11 +217,11 @@ static bool intel_pad_acpi_mode(struct intel_pinctrl *pctrl, unsigned pin)
+ 	return !(readl(hostown) & BIT(gpp_offset));
+ }
+ 
+-static bool intel_pad_locked(struct intel_pinctrl *pctrl, unsigned pin)
++static bool intel_pad_locked(struct intel_pinctrl *pctrl, unsigned int pin)
+ {
+ 	struct intel_community *community;
+ 	const struct intel_padgroup *padgrp;
+-	unsigned offset, gpp_offset;
++	unsigned int offset, gpp_offset;
+ 	u32 value;
+ 
+ 	community = intel_get_community(pctrl, pin);
+@@ -254,7 +254,7 @@ static bool intel_pad_locked(struct intel_pinctrl *pctrl, unsigned pin)
+ 	return false;
+ }
+ 
+-static bool intel_pad_usable(struct intel_pinctrl *pctrl, unsigned pin)
++static bool intel_pad_usable(struct intel_pinctrl *pctrl, unsigned int pin)
+ {
+ 	return intel_pad_owned_by_host(pctrl, pin) &&
+ 		!intel_pad_locked(pctrl, pin);
+@@ -268,15 +268,15 @@ static int intel_get_groups_count(struct pinctrl_dev *pctldev)
+ }
+ 
+ static const char *intel_get_group_name(struct pinctrl_dev *pctldev,
+-				      unsigned group)
++				      unsigned int group)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 
+ 	return pctrl->soc->groups[group].name;
+ }
+ 
+-static int intel_get_group_pins(struct pinctrl_dev *pctldev, unsigned group,
+-			      const unsigned **pins, unsigned *npins)
++static int intel_get_group_pins(struct pinctrl_dev *pctldev, unsigned int group,
++			      const unsigned int **pins, unsigned int *npins)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 
+@@ -286,7 +286,7 @@ static int intel_get_group_pins(struct pinctrl_dev *pctldev, unsigned group,
+ }
+ 
+ static void intel_pin_dbg_show(struct pinctrl_dev *pctldev, struct seq_file *s,
+-			       unsigned pin)
++			       unsigned int pin)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 	void __iomem *padcfg;
+@@ -345,7 +345,7 @@ static int intel_get_functions_count(struct pinctrl_dev *pctldev)
+ }
+ 
+ static const char *intel_get_function_name(struct pinctrl_dev *pctldev,
+-					   unsigned function)
++					   unsigned int function)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 
+@@ -353,9 +353,9 @@ static const char *intel_get_function_name(struct pinctrl_dev *pctldev,
+ }
+ 
+ static int intel_get_function_groups(struct pinctrl_dev *pctldev,
+-				     unsigned function,
++				     unsigned int function,
+ 				     const char * const **groups,
+-				     unsigned * const ngroups)
++				     unsigned int * const ngroups)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 
+@@ -364,8 +364,8 @@ static int intel_get_function_groups(struct pinctrl_dev *pctldev,
+ 	return 0;
+ }
+ 
+-static int intel_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned function,
+-				unsigned group)
++static int intel_pinmux_set_mux(struct pinctrl_dev *pctldev,
++				unsigned int function, unsigned int group)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 	const struct intel_pingroup *grp = &pctrl->soc->groups[group];
+@@ -447,7 +447,7 @@ static void intel_gpio_set_gpio_mode(void __iomem *padcfg0)
+ 
+ static int intel_gpio_request_enable(struct pinctrl_dev *pctldev,
+ 				     struct pinctrl_gpio_range *range,
+-				     unsigned pin)
++				     unsigned int pin)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 	void __iomem *padcfg0;
+@@ -485,7 +485,7 @@ static int intel_gpio_request_enable(struct pinctrl_dev *pctldev,
+ 
+ static int intel_gpio_set_direction(struct pinctrl_dev *pctldev,
+ 				    struct pinctrl_gpio_range *range,
+-				    unsigned pin, bool input)
++				    unsigned int pin, bool input)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 	void __iomem *padcfg0;
+@@ -510,7 +510,7 @@ static const struct pinmux_ops intel_pinmux_ops = {
+ 	.gpio_set_direction = intel_gpio_set_direction,
+ };
+ 
+-static int intel_config_get(struct pinctrl_dev *pctldev, unsigned pin,
++static int intel_config_get(struct pinctrl_dev *pctldev, unsigned int pin,
+ 			    unsigned long *config)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+@@ -599,11 +599,11 @@ static int intel_config_get(struct pinctrl_dev *pctldev, unsigned pin,
+ 	return 0;
+ }
+ 
+-static int intel_config_set_pull(struct intel_pinctrl *pctrl, unsigned pin,
++static int intel_config_set_pull(struct intel_pinctrl *pctrl, unsigned int pin,
+ 				 unsigned long config)
+ {
+-	unsigned param = pinconf_to_config_param(config);
+-	unsigned arg = pinconf_to_config_argument(config);
++	unsigned int param = pinconf_to_config_param(config);
++	unsigned int arg = pinconf_to_config_argument(config);
+ 	const struct intel_community *community;
+ 	void __iomem *padcfg1;
+ 	unsigned long flags;
+@@ -685,8 +685,8 @@ static int intel_config_set_pull(struct intel_pinctrl *pctrl, unsigned pin,
+ 	return ret;
+ }
+ 
+-static int intel_config_set_debounce(struct intel_pinctrl *pctrl, unsigned pin,
+-				     unsigned debounce)
++static int intel_config_set_debounce(struct intel_pinctrl *pctrl,
++				     unsigned int pin, unsigned int debounce)
+ {
+ 	void __iomem *padcfg0, *padcfg2;
+ 	unsigned long flags;
+@@ -732,8 +732,8 @@ exit_unlock:
+ 	return ret;
+ }
+ 
+-static int intel_config_set(struct pinctrl_dev *pctldev, unsigned pin,
+-			  unsigned long *configs, unsigned nconfigs)
++static int intel_config_set(struct pinctrl_dev *pctldev, unsigned int pin,
++			  unsigned long *configs, unsigned int nconfigs)
+ {
+ 	struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
+ 	int i, ret;
+@@ -790,7 +790,7 @@ static const struct pinctrl_desc intel_pinctrl_desc = {
+  * automatically translated to pinctrl pin number. This function can be
+  * used to find out the corresponding pinctrl pin.
+  */
+-static int intel_gpio_to_pin(struct intel_pinctrl *pctrl, unsigned offset,
++static int intel_gpio_to_pin(struct intel_pinctrl *pctrl, unsigned int offset,
+ 			     const struct intel_community **community,
+ 			     const struct intel_padgroup **padgrp)
+ {
+@@ -824,7 +824,7 @@ static int intel_gpio_to_pin(struct intel_pinctrl *pctrl, unsigned offset,
+ 	return -EINVAL;
+ }
+ 
+-static int intel_gpio_get(struct gpio_chip *chip, unsigned offset)
++static int intel_gpio_get(struct gpio_chip *chip, unsigned int offset)
+ {
+ 	struct intel_pinctrl *pctrl = gpiochip_get_data(chip);
+ 	void __iomem *reg;
+@@ -846,7 +846,8 @@ static int intel_gpio_get(struct gpio_chip *chip, unsigned offset)
+ 	return !!(padcfg0 & PADCFG0_GPIORXSTATE);
+ }
+ 
+-static void intel_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
++static void intel_gpio_set(struct gpio_chip *chip, unsigned int offset,
++			   int value)
+ {
+ 	struct intel_pinctrl *pctrl = gpiochip_get_data(chip);
+ 	unsigned long flags;
+@@ -895,12 +896,12 @@ static int intel_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
+ 	return !!(padcfg0 & PADCFG0_GPIOTXDIS);
+ }
+ 
+-static int intel_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
++static int intel_gpio_direction_input(struct gpio_chip *chip, unsigned int offset)
+ {
+ 	return pinctrl_gpio_direction_input(chip->base + offset);
+ }
+ 
+-static int intel_gpio_direction_output(struct gpio_chip *chip, unsigned offset,
++static int intel_gpio_direction_output(struct gpio_chip *chip, unsigned int offset,
+ 				       int value)
+ {
+ 	intel_gpio_set(chip, offset, value);
+@@ -929,7 +930,7 @@ static void intel_gpio_irq_ack(struct irq_data *d)
+ 
+ 	pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), &community, &padgrp);
+ 	if (pin >= 0) {
+-		unsigned gpp, gpp_offset, is_offset;
++		unsigned int gpp, gpp_offset, is_offset;
+ 
+ 		gpp = padgrp->reg_num;
+ 		gpp_offset = padgroup_offset(padgrp, pin);
+@@ -951,7 +952,7 @@ static void intel_gpio_irq_enable(struct irq_data *d)
+ 
+ 	pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), &community, &padgrp);
+ 	if (pin >= 0) {
+-		unsigned gpp, gpp_offset, is_offset;
++		unsigned int gpp, gpp_offset, is_offset;
+ 		unsigned long flags;
+ 		u32 value;
+ 
+@@ -980,7 +981,7 @@ static void intel_gpio_irq_mask_unmask(struct irq_data *d, bool mask)
+ 
+ 	pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), &community, &padgrp);
+ 	if (pin >= 0) {
+-		unsigned gpp, gpp_offset;
++		unsigned int gpp, gpp_offset;
+ 		unsigned long flags;
+ 		void __iomem *reg;
+ 		u32 value;
+@@ -1011,11 +1012,11 @@ static void intel_gpio_irq_unmask(struct irq_data *d)
+ 	intel_gpio_irq_mask_unmask(d, false);
+ }
+ 
+-static int intel_gpio_irq_type(struct irq_data *d, unsigned type)
++static int intel_gpio_irq_type(struct irq_data *d, unsigned int type)
+ {
+ 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
+ 	struct intel_pinctrl *pctrl = gpiochip_get_data(gc);
+-	unsigned pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), NULL, NULL);
++	unsigned int pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), NULL, NULL);
+ 	unsigned long flags;
+ 	void __iomem *reg;
+ 	u32 value;
+@@ -1072,7 +1073,7 @@ static int intel_gpio_irq_wake(struct irq_data *d, unsigned int on)
+ {
+ 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
+ 	struct intel_pinctrl *pctrl = gpiochip_get_data(gc);
+-	unsigned pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), NULL, NULL);
++	unsigned int pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), NULL, NULL);
+ 
+ 	if (on)
+ 		enable_irq_wake(pctrl->irq);
+@@ -1167,7 +1168,7 @@ static int intel_gpio_add_pin_ranges(struct intel_pinctrl *pctrl,
+ static unsigned intel_gpio_ngpio(const struct intel_pinctrl *pctrl)
+ {
+ 	const struct intel_community *community;
+-	unsigned ngpio = 0;
++	unsigned int ngpio = 0;
+ 	int i, j;
+ 
+ 	for (i = 0; i < pctrl->ncommunities; i++) {
+@@ -1243,8 +1244,8 @@ static int intel_pinctrl_add_padgroups(struct intel_pinctrl *pctrl,
+ 				       struct intel_community *community)
+ {
+ 	struct intel_padgroup *gpps;
+-	unsigned npins = community->npins;
+-	unsigned padown_num = 0;
++	unsigned int npins = community->npins;
++	unsigned int padown_num = 0;
+ 	size_t ngpps, i;
+ 
+ 	if (community->gpps)
+@@ -1260,7 +1261,7 @@ static int intel_pinctrl_add_padgroups(struct intel_pinctrl *pctrl,
+ 		if (community->gpps) {
+ 			gpps[i] = community->gpps[i];
+ 		} else {
+-			unsigned gpp_size = community->gpp_size;
++			unsigned int gpp_size = community->gpp_size;
+ 
+ 			gpps[i].reg_num = i;
+ 			gpps[i].base = community->pin_base + i * gpp_size;
+@@ -1431,7 +1432,13 @@ int intel_pinctrl_probe(struct platform_device *pdev,
+ EXPORT_SYMBOL_GPL(intel_pinctrl_probe);
+ 
+ #ifdef CONFIG_PM_SLEEP
+-static bool intel_pinctrl_should_save(struct intel_pinctrl *pctrl, unsigned pin)
++static bool __intel_gpio_is_direct_irq(u32 value)
++{
++	return (value & PADCFG0_GPIROUTIOXAPIC) && (value & PADCFG0_GPIOTXDIS) &&
++	       (__intel_gpio_get_gpio_mode(value) == PADCFG0_PMODE_GPIO);
++}
++
++static bool intel_pinctrl_should_save(struct intel_pinctrl *pctrl, unsigned int pin)
+ {
+ 	const struct pin_desc *pd = pin_desc_get(pctrl->pctldev, pin);
+ 	u32 value;
+@@ -1464,8 +1471,7 @@ static bool intel_pinctrl_should_save(struct intel_pinctrl *pctrl, unsigned pin)
+ 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=214749.
+ 	 */
+ 	value = readl(intel_get_padcfg(pctrl, pin, PADCFG0));
+-	if ((value & PADCFG0_GPIROUTIOXAPIC) && (value & PADCFG0_GPIOTXDIS) &&
+-	    (__intel_gpio_get_gpio_mode(value) == PADCFG0_PMODE_GPIO))
++	if (__intel_gpio_is_direct_irq(value))
+ 		return true;
+ 
+ 	return false;
+@@ -1502,7 +1508,7 @@ int intel_pinctrl_suspend(struct device *dev)
+ 	for (i = 0; i < pctrl->ncommunities; i++) {
+ 		struct intel_community *community = &pctrl->communities[i];
+ 		void __iomem *base;
+-		unsigned gpp;
++		unsigned int gpp;
+ 
+ 		base = community->regs + community->ie_offset;
+ 		for (gpp = 0; gpp < community->ngpps; gpp++)
+@@ -1520,7 +1526,7 @@ static void intel_gpio_irq_init(struct intel_pinctrl *pctrl)
+ 	for (i = 0; i < pctrl->ncommunities; i++) {
+ 		const struct intel_community *community;
+ 		void __iomem *base;
+-		unsigned gpp;
++		unsigned int gpp;
+ 
+ 		community = &pctrl->communities[i];
+ 		base = community->regs;
+@@ -1550,7 +1556,12 @@ int intel_pinctrl_resume(struct device *dev)
+ 		void __iomem *padcfg;
+ 		u32 val;
+ 
+-		if (!intel_pinctrl_should_save(pctrl, desc->number))
++		if (!(intel_pinctrl_should_save(pctrl, desc->number) ||
++		      /*
++		       * If the firmware mangled the register contents too much,
++		       * check the saved value for the Direct IRQ mode.
++		       */
++		      __intel_gpio_is_direct_irq(pads[i].padcfg0)))
+ 			continue;
+ 
+ 		padcfg = intel_get_padcfg(pctrl, desc->number, PADCFG0);
+@@ -1584,7 +1595,7 @@ int intel_pinctrl_resume(struct device *dev)
+ 	for (i = 0; i < pctrl->ncommunities; i++) {
+ 		struct intel_community *community = &pctrl->communities[i];
+ 		void __iomem *base;
+-		unsigned gpp;
++		unsigned int gpp;
+ 
+ 		base = community->regs + community->ie_offset;
+ 		for (gpp = 0; gpp < community->ngpps; gpp++) {
+diff --git a/drivers/pinctrl/intel/pinctrl-intel.h b/drivers/pinctrl/intel/pinctrl-intel.h
+index 1785abf157e4b..737a545b448f0 100644
+--- a/drivers/pinctrl/intel/pinctrl-intel.h
++++ b/drivers/pinctrl/intel/pinctrl-intel.h
+@@ -25,10 +25,10 @@ struct device;
+  */
+ struct intel_pingroup {
+ 	const char *name;
+-	const unsigned *pins;
++	const unsigned int *pins;
+ 	size_t npins;
+ 	unsigned short mode;
+-	const unsigned *modes;
++	const unsigned int *modes;
+ };
+ 
+ /**
+@@ -56,11 +56,11 @@ struct intel_function {
+  * to specify them.
+  */
+ struct intel_padgroup {
+-	unsigned reg_num;
+-	unsigned base;
+-	unsigned size;
++	unsigned int reg_num;
++	unsigned int base;
++	unsigned int size;
+ 	int gpio_base;
+-	unsigned padown_num;
++	unsigned int padown_num;
+ };
+ 
+ /**
+@@ -96,17 +96,17 @@ struct intel_padgroup {
+  * pass custom @gpps and @ngpps instead.
+  */
+ struct intel_community {
+-	unsigned barno;
+-	unsigned padown_offset;
+-	unsigned padcfglock_offset;
+-	unsigned hostown_offset;
+-	unsigned is_offset;
+-	unsigned ie_offset;
+-	unsigned pin_base;
+-	unsigned gpp_size;
+-	unsigned gpp_num_padown_regs;
++	unsigned int barno;
++	unsigned int padown_offset;
++	unsigned int padcfglock_offset;
++	unsigned int hostown_offset;
++	unsigned int is_offset;
++	unsigned int ie_offset;
++	unsigned int pin_base;
++	unsigned int gpp_size;
++	unsigned int gpp_num_padown_regs;
+ 	size_t npins;
+-	unsigned features;
++	unsigned int features;
+ 	const struct intel_padgroup *gpps;
+ 	size_t ngpps;
+ 	/* Reserved for the core driver */
+diff --git a/drivers/pinctrl/pinctrl-single.c b/drivers/pinctrl/pinctrl-single.c
+index 2b50030ad97e0..4143cafbf7e73 100644
+--- a/drivers/pinctrl/pinctrl-single.c
++++ b/drivers/pinctrl/pinctrl-single.c
+@@ -345,6 +345,8 @@ static int pcs_set_mux(struct pinctrl_dev *pctldev, unsigned fselector,
+ 	if (!pcs->fmask)
+ 		return 0;
+ 	function = pinmux_generic_get_function(pctldev, fselector);
++	if (!function)
++		return -EINVAL;
+ 	func = function->data;
+ 	if (!func)
+ 		return -EINVAL;
+diff --git a/drivers/scsi/iscsi_tcp.c b/drivers/scsi/iscsi_tcp.c
+index 7212e3a13fe6b..33fb111e2e19d 100644
+--- a/drivers/scsi/iscsi_tcp.c
++++ b/drivers/scsi/iscsi_tcp.c
+@@ -775,7 +775,7 @@ static int iscsi_sw_tcp_host_get_param(struct Scsi_Host *shost,
+ 				       enum iscsi_host_param param, char *buf)
+ {
+ 	struct iscsi_sw_tcp_host *tcp_sw_host = iscsi_host_priv(shost);
+-	struct iscsi_session *session = tcp_sw_host->session;
++	struct iscsi_session *session;
+ 	struct iscsi_conn *conn;
+ 	struct iscsi_tcp_conn *tcp_conn;
+ 	struct iscsi_sw_tcp_conn *tcp_sw_conn;
+@@ -784,6 +784,7 @@ static int iscsi_sw_tcp_host_get_param(struct Scsi_Host *shost,
+ 
+ 	switch (param) {
+ 	case ISCSI_HOST_PARAM_IPADDRESS:
++		session = tcp_sw_host->session;
+ 		if (!session)
+ 			return -ENOTCONN;
+ 
+@@ -872,12 +873,14 @@ iscsi_sw_tcp_session_create(struct iscsi_endpoint *ep, uint16_t cmds_max,
+ 	if (!cls_session)
+ 		goto remove_host;
+ 	session = cls_session->dd_data;
+-	tcp_sw_host = iscsi_host_priv(shost);
+-	tcp_sw_host->session = session;
+ 
+ 	shost->can_queue = session->scsi_cmds_max;
+ 	if (iscsi_tcp_r2tpool_alloc(session))
+ 		goto remove_session;
++
++	/* We are now fully setup so expose the session to sysfs. */
++	tcp_sw_host = iscsi_host_priv(shost);
++	tcp_sw_host->session = session;
+ 	return cls_session;
+ 
+ remove_session:
+diff --git a/drivers/target/target_core_tmr.c b/drivers/target/target_core_tmr.c
+index 6d1179a7f043d..bba24eaea2ce4 100644
+--- a/drivers/target/target_core_tmr.c
++++ b/drivers/target/target_core_tmr.c
+@@ -95,8 +95,8 @@ static bool __target_check_io_state(struct se_cmd *se_cmd,
+ {
+ 	struct se_session *sess = se_cmd->se_sess;
+ 
+-	assert_spin_locked(&sess->sess_cmd_lock);
+-	WARN_ON_ONCE(!irqs_disabled());
++	lockdep_assert_held(&sess->sess_cmd_lock);
++
+ 	/*
+ 	 * If command already reached CMD_T_COMPLETE state within
+ 	 * target_complete_cmd() or CMD_T_FABRIC_STOP due to shutdown,
+diff --git a/drivers/thermal/int340x_thermal/int340x_thermal_zone.c b/drivers/thermal/int340x_thermal/int340x_thermal_zone.c
+index 9ec27ac1856bf..1adcef95f7b95 100644
+--- a/drivers/thermal/int340x_thermal/int340x_thermal_zone.c
++++ b/drivers/thermal/int340x_thermal/int340x_thermal_zone.c
+@@ -52,11 +52,13 @@ static int int340x_thermal_get_trip_temp(struct thermal_zone_device *zone,
+ 					 int trip, int *temp)
+ {
+ 	struct int34x_thermal_zone *d = zone->devdata;
+-	int i;
++	int i, ret = 0;
+ 
+ 	if (d->override_ops && d->override_ops->get_trip_temp)
+ 		return d->override_ops->get_trip_temp(zone, trip, temp);
+ 
++	mutex_lock(&d->trip_mutex);
++
+ 	if (trip < d->aux_trip_nr)
+ 		*temp = d->aux_trips[trip];
+ 	else if (trip == d->crt_trip_id)
+@@ -74,10 +76,12 @@ static int int340x_thermal_get_trip_temp(struct thermal_zone_device *zone,
+ 			}
+ 		}
+ 		if (i == INT340X_THERMAL_MAX_ACT_TRIP_COUNT)
+-			return -EINVAL;
++			ret = -EINVAL;
+ 	}
+ 
+-	return 0;
++	mutex_unlock(&d->trip_mutex);
++
++	return ret;
+ }
+ 
+ static int int340x_thermal_get_trip_type(struct thermal_zone_device *zone,
+@@ -85,11 +89,13 @@ static int int340x_thermal_get_trip_type(struct thermal_zone_device *zone,
+ 					 enum thermal_trip_type *type)
+ {
+ 	struct int34x_thermal_zone *d = zone->devdata;
+-	int i;
++	int i, ret = 0;
+ 
+ 	if (d->override_ops && d->override_ops->get_trip_type)
+ 		return d->override_ops->get_trip_type(zone, trip, type);
+ 
++	mutex_lock(&d->trip_mutex);
++
+ 	if (trip < d->aux_trip_nr)
+ 		*type = THERMAL_TRIP_PASSIVE;
+ 	else if (trip == d->crt_trip_id)
+@@ -107,10 +113,12 @@ static int int340x_thermal_get_trip_type(struct thermal_zone_device *zone,
+ 			}
+ 		}
+ 		if (i == INT340X_THERMAL_MAX_ACT_TRIP_COUNT)
+-			return -EINVAL;
++			ret = -EINVAL;
+ 	}
+ 
+-	return 0;
++	mutex_unlock(&d->trip_mutex);
++
++	return ret;
+ }
+ 
+ static int int340x_thermal_set_trip_temp(struct thermal_zone_device *zone,
+@@ -182,6 +190,8 @@ int int340x_thermal_read_trips(struct int34x_thermal_zone *int34x_zone)
+ 	int trip_cnt = int34x_zone->aux_trip_nr;
+ 	int i;
+ 
++	mutex_lock(&int34x_zone->trip_mutex);
++
+ 	int34x_zone->crt_trip_id = -1;
+ 	if (!int340x_thermal_get_trip_config(int34x_zone->adev->handle, "_CRT",
+ 					     &int34x_zone->crt_temp))
+@@ -209,6 +219,8 @@ int int340x_thermal_read_trips(struct int34x_thermal_zone *int34x_zone)
+ 		int34x_zone->act_trips[i].valid = true;
+ 	}
+ 
++	mutex_unlock(&int34x_zone->trip_mutex);
++
+ 	return trip_cnt;
+ }
+ EXPORT_SYMBOL_GPL(int340x_thermal_read_trips);
+@@ -232,6 +244,8 @@ struct int34x_thermal_zone *int340x_thermal_zone_add(struct acpi_device *adev,
+ 	if (!int34x_thermal_zone)
+ 		return ERR_PTR(-ENOMEM);
+ 
++	mutex_init(&int34x_thermal_zone->trip_mutex);
++
+ 	int34x_thermal_zone->adev = adev;
+ 	int34x_thermal_zone->override_ops = override_ops;
+ 
+@@ -274,6 +288,7 @@ err_thermal_zone:
+ 	acpi_lpat_free_conversion_table(int34x_thermal_zone->lpat_table);
+ 	kfree(int34x_thermal_zone->aux_trips);
+ err_trip_alloc:
++	mutex_destroy(&int34x_thermal_zone->trip_mutex);
+ 	kfree(int34x_thermal_zone);
+ 	return ERR_PTR(ret);
+ }
+@@ -285,6 +300,7 @@ void int340x_thermal_zone_remove(struct int34x_thermal_zone
+ 	thermal_zone_device_unregister(int34x_thermal_zone->zone);
+ 	acpi_lpat_free_conversion_table(int34x_thermal_zone->lpat_table);
+ 	kfree(int34x_thermal_zone->aux_trips);
++	mutex_destroy(&int34x_thermal_zone->trip_mutex);
+ 	kfree(int34x_thermal_zone);
+ }
+ EXPORT_SYMBOL_GPL(int340x_thermal_zone_remove);
+diff --git a/drivers/thermal/int340x_thermal/int340x_thermal_zone.h b/drivers/thermal/int340x_thermal/int340x_thermal_zone.h
+index 5f3ba4775c5cd..e74648e330c71 100644
+--- a/drivers/thermal/int340x_thermal/int340x_thermal_zone.h
++++ b/drivers/thermal/int340x_thermal/int340x_thermal_zone.h
+@@ -41,6 +41,7 @@ struct int34x_thermal_zone {
+ 	struct thermal_zone_device_ops *override_ops;
+ 	void *priv_data;
+ 	struct acpi_lpat_conversion_table *lpat_table;
++	struct mutex trip_mutex;
+ };
+ 
+ struct int34x_thermal_zone *int340x_thermal_zone_add(struct acpi_device *,
+diff --git a/drivers/tty/serial/8250/8250_dma.c b/drivers/tty/serial/8250/8250_dma.c
+index bfa1a857f3ffa..c8b17070faf4e 100644
+--- a/drivers/tty/serial/8250/8250_dma.c
++++ b/drivers/tty/serial/8250/8250_dma.c
+@@ -48,19 +48,39 @@ static void __dma_rx_complete(void *param)
+ 	struct uart_8250_dma	*dma = p->dma;
+ 	struct tty_port		*tty_port = &p->port.state->port;
+ 	struct dma_tx_state	state;
++	enum dma_status		dma_status;
+ 	int			count;
+ 
+-	dma->rx_running = 0;
+-	dmaengine_tx_status(dma->rxchan, dma->rx_cookie, &state);
++	/*
++	 * New DMA Rx can be started during the completion handler before it
++	 * could acquire port's lock and it might still be ongoing. Don't to
++	 * anything in such case.
++	 */
++	dma_status = dmaengine_tx_status(dma->rxchan, dma->rx_cookie, &state);
++	if (dma_status == DMA_IN_PROGRESS)
++		return;
+ 
+ 	count = dma->rx_size - state.residue;
+ 
+ 	tty_insert_flip_string(tty_port, dma->rx_buf, count);
+ 	p->port.icount.rx += count;
++	dma->rx_running = 0;
+ 
+ 	tty_flip_buffer_push(tty_port);
+ }
+ 
++static void dma_rx_complete(void *param)
++{
++	struct uart_8250_port *p = param;
++	struct uart_8250_dma *dma = p->dma;
++	unsigned long flags;
++
++	spin_lock_irqsave(&p->port.lock, flags);
++	if (dma->rx_running)
++		__dma_rx_complete(p);
++	spin_unlock_irqrestore(&p->port.lock, flags);
++}
++
+ int serial8250_tx_dma(struct uart_8250_port *p)
+ {
+ 	struct uart_8250_dma		*dma = p->dma;
+@@ -126,7 +146,7 @@ int serial8250_rx_dma(struct uart_8250_port *p)
+ 		return -EBUSY;
+ 
+ 	dma->rx_running = 1;
+-	desc->callback = __dma_rx_complete;
++	desc->callback = dma_rx_complete;
+ 	desc->callback_param = p;
+ 
+ 	dma->rx_cookie = dmaengine_submit(desc);
+diff --git a/drivers/tty/vt/vc_screen.c b/drivers/tty/vt/vc_screen.c
+index 2fb509d57e88c..03fe692d940b8 100644
+--- a/drivers/tty/vt/vc_screen.c
++++ b/drivers/tty/vt/vc_screen.c
+@@ -247,10 +247,6 @@ vcs_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
+ 
+ 	uni_mode = use_unicode(inode);
+ 	attr = use_attributes(inode);
+-	ret = -ENXIO;
+-	vc = vcs_vc(inode, &viewed);
+-	if (!vc)
+-		goto unlock_out;
+ 
+ 	ret = -EINVAL;
+ 	if (pos < 0)
+@@ -270,6 +266,11 @@ vcs_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
+ 		ssize_t orig_count;
+ 		long p = pos;
+ 
++		ret = -ENXIO;
++		vc = vcs_vc(inode, &viewed);
++		if (!vc)
++			goto unlock_out;
++
+ 		/* Check whether we are above size each round,
+ 		 * as copy_to_user at the end of this loop
+ 		 * could sleep.
+diff --git a/drivers/usb/core/quirks.c b/drivers/usb/core/quirks.c
+index 35a11f7bcb658..1346c600ebedf 100644
+--- a/drivers/usb/core/quirks.c
++++ b/drivers/usb/core/quirks.c
+@@ -527,6 +527,9 @@ static const struct usb_device_id usb_quirk_list[] = {
+ 	/* DJI CineSSD */
+ 	{ USB_DEVICE(0x2ca3, 0x0031), .driver_info = USB_QUIRK_NO_LPM },
+ 
++	/* Alcor Link AK9563 SC Reader used in 2022 Lenovo ThinkPads */
++	{ USB_DEVICE(0x2ce3, 0x9563), .driver_info = USB_QUIRK_NO_LPM },
++
+ 	/* DELL USB GEN2 */
+ 	{ USB_DEVICE(0x413c, 0xb062), .driver_info = USB_QUIRK_NO_LPM | USB_QUIRK_RESET_RESUME },
+ 
+diff --git a/drivers/usb/dwc3/dwc3-qcom.c b/drivers/usb/dwc3/dwc3-qcom.c
+index 9d5320562e81f..58e1bc3a77d80 100644
+--- a/drivers/usb/dwc3/dwc3-qcom.c
++++ b/drivers/usb/dwc3/dwc3-qcom.c
+@@ -85,7 +85,7 @@ static inline void dwc3_qcom_clrbits(void __iomem *base, u32 offset, u32 val)
+ 	readl(base + offset);
+ }
+ 
+-static void dwc3_qcom_vbus_overrride_enable(struct dwc3_qcom *qcom, bool enable)
++static void dwc3_qcom_vbus_override_enable(struct dwc3_qcom *qcom, bool enable)
+ {
+ 	if (enable) {
+ 		dwc3_qcom_setbits(qcom->qscratch_base, QSCRATCH_SS_PHY_CTRL,
+@@ -106,7 +106,7 @@ static int dwc3_qcom_vbus_notifier(struct notifier_block *nb,
+ 	struct dwc3_qcom *qcom = container_of(nb, struct dwc3_qcom, vbus_nb);
+ 
+ 	/* enable vbus override for device mode */
+-	dwc3_qcom_vbus_overrride_enable(qcom, event);
++	dwc3_qcom_vbus_override_enable(qcom, event);
+ 	qcom->mode = event ? USB_DR_MODE_PERIPHERAL : USB_DR_MODE_HOST;
+ 
+ 	return NOTIFY_DONE;
+@@ -118,7 +118,7 @@ static int dwc3_qcom_host_notifier(struct notifier_block *nb,
+ 	struct dwc3_qcom *qcom = container_of(nb, struct dwc3_qcom, host_nb);
+ 
+ 	/* disable vbus override in host mode */
+-	dwc3_qcom_vbus_overrride_enable(qcom, !event);
++	dwc3_qcom_vbus_override_enable(qcom, !event);
+ 	qcom->mode = event ? USB_DR_MODE_HOST : USB_DR_MODE_PERIPHERAL;
+ 
+ 	return NOTIFY_DONE;
+@@ -512,8 +512,8 @@ static int dwc3_qcom_probe(struct platform_device *pdev)
+ 	qcom->mode = usb_get_dr_mode(&qcom->dwc3->dev);
+ 
+ 	/* enable vbus override for device mode */
+-	if (qcom->mode == USB_DR_MODE_PERIPHERAL)
+-		dwc3_qcom_vbus_overrride_enable(qcom, true);
++	if (qcom->mode != USB_DR_MODE_HOST)
++		dwc3_qcom_vbus_override_enable(qcom, true);
+ 
+ 	/* register extcon to override sw_vbus on Vbus change later */
+ 	ret = dwc3_qcom_register_extcon(qcom);
+diff --git a/drivers/usb/gadget/function/f_fs.c b/drivers/usb/gadget/function/f_fs.c
+index 48bdb2a3972bc..f9f324f76a723 100644
+--- a/drivers/usb/gadget/function/f_fs.c
++++ b/drivers/usb/gadget/function/f_fs.c
+@@ -271,8 +271,10 @@ static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
+ 	struct usb_request *req = ffs->ep0req;
+ 	int ret;
+ 
+-	if (!req)
++	if (!req) {
++		spin_unlock_irq(&ffs->ev.waitq.lock);
+ 		return -EINVAL;
++	}
+ 
+ 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
+ 
+diff --git a/drivers/usb/typec/altmodes/displayport.c b/drivers/usb/typec/altmodes/displayport.c
+index 2ae3fab36a80e..7387f52cb58d1 100644
+--- a/drivers/usb/typec/altmodes/displayport.c
++++ b/drivers/usb/typec/altmodes/displayport.c
+@@ -526,10 +526,10 @@ static int dp_altmode_probe(struct typec_altmode *alt)
+ 	/* FIXME: Port can only be DFP_U. */
+ 
+ 	/* Make sure we have compatiple pin configurations */
+-	if (!(DP_CAP_DFP_D_PIN_ASSIGN(port->vdo) &
+-	      DP_CAP_UFP_D_PIN_ASSIGN(alt->vdo)) &&
+-	    !(DP_CAP_UFP_D_PIN_ASSIGN(port->vdo) &
+-	      DP_CAP_DFP_D_PIN_ASSIGN(alt->vdo)))
++	if (!(DP_CAP_PIN_ASSIGN_DFP_D(port->vdo) &
++	      DP_CAP_PIN_ASSIGN_UFP_D(alt->vdo)) &&
++	    !(DP_CAP_PIN_ASSIGN_UFP_D(port->vdo) &
++	      DP_CAP_PIN_ASSIGN_DFP_D(alt->vdo)))
+ 		return -ENODEV;
+ 
+ 	ret = sysfs_create_group(&alt->dev.kobj, &dp_altmode_group);
+diff --git a/drivers/video/fbdev/core/fbcon.c b/drivers/video/fbdev/core/fbcon.c
+index 9fcd583b78351..dea5275254ef1 100644
+--- a/drivers/video/fbdev/core/fbcon.c
++++ b/drivers/video/fbdev/core/fbcon.c
+@@ -2475,9 +2475,12 @@ static int fbcon_set_font(struct vc_data *vc, struct console_font *font,
+ 	    h > FBCON_SWAP(info->var.rotate, info->var.yres, info->var.xres))
+ 		return -EINVAL;
+ 
++	if (font->width > 32 || font->height > 32)
++		return -EINVAL;
++
+ 	/* Make sure drawing engine can handle the font */
+-	if (!(info->pixmap.blit_x & (1 << (font->width - 1))) ||
+-	    !(info->pixmap.blit_y & (1 << (font->height - 1))))
++	if (!(info->pixmap.blit_x & BIT(font->width - 1)) ||
++	    !(info->pixmap.blit_y & BIT(font->height - 1)))
+ 		return -EINVAL;
+ 
+ 	/* Make sure driver can handle the font length */
+diff --git a/drivers/watchdog/diag288_wdt.c b/drivers/watchdog/diag288_wdt.c
+index 806a04a676b7e..561797c3b2028 100644
+--- a/drivers/watchdog/diag288_wdt.c
++++ b/drivers/watchdog/diag288_wdt.c
+@@ -88,7 +88,7 @@ static int __diag288(unsigned int func, unsigned int timeout,
+ 		"1:\n"
+ 		EX_TABLE(0b, 1b)
+ 		: "+d" (err) : "d"(__func), "d"(__timeout),
+-		  "d"(__action), "d"(__len) : "1", "cc");
++		  "d"(__action), "d"(__len) : "1", "cc", "memory");
+ 	return err;
+ }
+ 
+@@ -274,12 +274,21 @@ static int __init diag288_init(void)
+ 	char ebc_begin[] = {
+ 		194, 197, 199, 201, 213
+ 	};
++	char *ebc_cmd;
+ 
+ 	watchdog_set_nowayout(&wdt_dev, nowayout_info);
+ 
+ 	if (MACHINE_IS_VM) {
+-		if (__diag288_vm(WDT_FUNC_INIT, 15,
+-				 ebc_begin, sizeof(ebc_begin)) != 0) {
++		ebc_cmd = kmalloc(sizeof(ebc_begin), GFP_KERNEL);
++		if (!ebc_cmd) {
++			pr_err("The watchdog cannot be initialized\n");
++			return -ENOMEM;
++		}
++		memcpy(ebc_cmd, ebc_begin, sizeof(ebc_begin));
++		ret = __diag288_vm(WDT_FUNC_INIT, 15,
++				   ebc_cmd, sizeof(ebc_begin));
++		kfree(ebc_cmd);
++		if (ret != 0) {
+ 			pr_err("The watchdog cannot be initialized\n");
+ 			return -EINVAL;
+ 		}
+diff --git a/fs/aio.c b/fs/aio.c
+index 9635c29b83da1..1bd934eccbf6c 100644
+--- a/fs/aio.c
++++ b/fs/aio.c
+@@ -332,6 +332,9 @@ static int aio_ring_mremap(struct vm_area_struct *vma)
+ 	spin_lock(&mm->ioctx_lock);
+ 	rcu_read_lock();
+ 	table = rcu_dereference(mm->ioctx_table);
++	if (!table)
++		goto out_unlock;
++
+ 	for (i = 0; i < table->nr; i++) {
+ 		struct kioctx *ctx;
+ 
+@@ -345,6 +348,7 @@ static int aio_ring_mremap(struct vm_area_struct *vma)
+ 		}
+ 	}
+ 
++out_unlock:
+ 	rcu_read_unlock();
+ 	spin_unlock(&mm->ioctx_lock);
+ 	return res;
+diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c
+index 2b4d33b58a68a..0294f519c29ee 100644
+--- a/fs/btrfs/volumes.c
++++ b/fs/btrfs/volumes.c
+@@ -1418,7 +1418,7 @@ again:
+ 			goto out;
+ 	}
+ 
+-	while (1) {
++	while (search_start < search_end) {
+ 		l = path->nodes[0];
+ 		slot = path->slots[0];
+ 		if (slot >= btrfs_header_nritems(l)) {
+@@ -1441,6 +1441,9 @@ again:
+ 		if (key.type != BTRFS_DEV_EXTENT_KEY)
+ 			goto next;
+ 
++		if (key.offset > search_end)
++			break;
++
+ 		if (key.offset > search_start) {
+ 			hole_size = key.offset - search_start;
+ 
+@@ -1515,6 +1518,7 @@ next:
+ 	else
+ 		ret = 0;
+ 
++	ASSERT(max_hole_start + max_hole_size <= search_end);
+ out:
+ 	btrfs_free_path(path);
+ 	*start = max_hole_start;
+diff --git a/fs/nilfs2/ioctl.c b/fs/nilfs2/ioctl.c
+index 9b96d79eea6c8..708aa1b92036b 100644
+--- a/fs/nilfs2/ioctl.c
++++ b/fs/nilfs2/ioctl.c
+@@ -1135,7 +1135,14 @@ static int nilfs_ioctl_set_alloc_range(struct inode *inode, void __user *argp)
+ 
+ 	minseg = range[0] + segbytes - 1;
+ 	do_div(minseg, segbytes);
++
++	if (range[1] < 4096)
++		goto out;
++
+ 	maxseg = NILFS_SB2_OFFSET_BYTES(range[1]);
++	if (maxseg < segbytes)
++		goto out;
++
+ 	do_div(maxseg, segbytes);
+ 	maxseg--;
+ 
+diff --git a/fs/nilfs2/super.c b/fs/nilfs2/super.c
+index 5e4d7d19102c5..2961b5ceb4a7c 100644
+--- a/fs/nilfs2/super.c
++++ b/fs/nilfs2/super.c
+@@ -410,6 +410,15 @@ int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
+ 	if (newsize > devsize)
+ 		goto out;
+ 
++	/*
++	 * Prevent underflow in second superblock position calculation.
++	 * The exact minimum size check is done in nilfs_sufile_resize().
++	 */
++	if (newsize < 4096) {
++		ret = -ENOSPC;
++		goto out;
++	}
++
+ 	/*
+ 	 * Write lock is required to protect some functions depending
+ 	 * on the number of segments, the number of reserved segments,
+diff --git a/fs/nilfs2/the_nilfs.c b/fs/nilfs2/the_nilfs.c
+index 74ef3d313686f..6541e29a8b200 100644
+--- a/fs/nilfs2/the_nilfs.c
++++ b/fs/nilfs2/the_nilfs.c
+@@ -517,9 +517,15 @@ static int nilfs_load_super_block(struct the_nilfs *nilfs,
+ {
+ 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
+ 	struct buffer_head **sbh = nilfs->ns_sbh;
+-	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
++	u64 sb2off, devsize = nilfs->ns_bdev->bd_inode->i_size;
+ 	int valid[2], swp = 0;
+ 
++	if (devsize < NILFS_SEG_MIN_BLOCKS * NILFS_MIN_BLOCK_SIZE + 4096) {
++		nilfs_msg(sb, KERN_ERR, "device size too small");
++		return -EINVAL;
++	}
++	sb2off = NILFS_SB2_OFFSET_BYTES(devsize);
++
+ 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
+ 					&sbh[0]);
+ 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
+diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c
+index dc63d4c6029e1..2f2afc3c6fc67 100644
+--- a/fs/proc/task_mmu.c
++++ b/fs/proc/task_mmu.c
+@@ -701,9 +701,7 @@ static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
+ 			page = device_private_entry_to_page(swpent);
+ 	}
+ 	if (page) {
+-		int mapcount = page_mapcount(page);
+-
+-		if (mapcount >= 2)
++		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
+ 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
+ 		else
+ 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
+diff --git a/fs/squashfs/squashfs_fs.h b/fs/squashfs/squashfs_fs.h
+index 10e93345b6153..75886e6d9c97b 100644
+--- a/fs/squashfs/squashfs_fs.h
++++ b/fs/squashfs/squashfs_fs.h
+@@ -196,7 +196,7 @@ static inline int squashfs_block_size(__le32 raw)
+ #define SQUASHFS_ID_BLOCK_BYTES(A)	(SQUASHFS_ID_BLOCKS(A) *\
+ 					sizeof(u64))
+ /* xattr id lookup table defines */
+-#define SQUASHFS_XATTR_BYTES(A)		((A) * sizeof(struct squashfs_xattr_id))
++#define SQUASHFS_XATTR_BYTES(A)		(((u64) (A)) * sizeof(struct squashfs_xattr_id))
+ 
+ #define SQUASHFS_XATTR_BLOCK(A)		(SQUASHFS_XATTR_BYTES(A) / \
+ 					SQUASHFS_METADATA_SIZE)
+diff --git a/fs/squashfs/squashfs_fs_sb.h b/fs/squashfs/squashfs_fs_sb.h
+index 5234c19a0eabc..7ec30a11273ea 100644
+--- a/fs/squashfs/squashfs_fs_sb.h
++++ b/fs/squashfs/squashfs_fs_sb.h
+@@ -76,7 +76,7 @@ struct squashfs_sb_info {
+ 	long long				bytes_used;
+ 	unsigned int				inodes;
+ 	unsigned int				fragments;
+-	int					xattr_ids;
++	unsigned int				xattr_ids;
+ 	unsigned int				ids;
+ };
+ #endif
+diff --git a/fs/squashfs/xattr.h b/fs/squashfs/xattr.h
+index 86b0a0073e51f..f360f27e38f37 100644
+--- a/fs/squashfs/xattr.h
++++ b/fs/squashfs/xattr.h
+@@ -23,12 +23,12 @@
+ 
+ #ifdef CONFIG_SQUASHFS_XATTR
+ extern __le64 *squashfs_read_xattr_id_table(struct super_block *, u64,
+-		u64 *, int *);
++		u64 *, unsigned int *);
+ extern int squashfs_xattr_lookup(struct super_block *, unsigned int, int *,
+ 		unsigned int *, unsigned long long *);
+ #else
+ static inline __le64 *squashfs_read_xattr_id_table(struct super_block *sb,
+-		u64 start, u64 *xattr_table_start, int *xattr_ids)
++		u64 start, u64 *xattr_table_start, unsigned int *xattr_ids)
+ {
+ 	struct squashfs_xattr_id_table *id_table;
+ 
+diff --git a/fs/squashfs/xattr_id.c b/fs/squashfs/xattr_id.c
+index 7f718d2bf3579..fe266b3e95f8f 100644
+--- a/fs/squashfs/xattr_id.c
++++ b/fs/squashfs/xattr_id.c
+@@ -69,7 +69,7 @@ int squashfs_xattr_lookup(struct super_block *sb, unsigned int index,
+  * Read uncompressed xattr id lookup table indexes from disk into memory
+  */
+ __le64 *squashfs_read_xattr_id_table(struct super_block *sb, u64 table_start,
+-		u64 *xattr_table_start, int *xattr_ids)
++		u64 *xattr_table_start, unsigned int *xattr_ids)
+ {
+ 	struct squashfs_sb_info *msblk = sb->s_fs_info;
+ 	unsigned int len, indexes;
+diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h
+index cb7dc38e9c779..354d320c3fd68 100644
+--- a/include/linux/hugetlb.h
++++ b/include/linux/hugetlb.h
+@@ -7,6 +7,7 @@
+ #include <linux/fs.h>
+ #include <linux/hugetlb_inline.h>
+ #include <linux/cgroup.h>
++#include <linux/page_ref.h>
+ #include <linux/list.h>
+ #include <linux/kref.h>
+ #include <asm/pgtable.h>
+@@ -404,7 +405,10 @@ static inline struct hstate *hstate_sizelog(int page_size_log)
+ 	if (!page_size_log)
+ 		return &default_hstate;
+ 
+-	return size_to_hstate(1UL << page_size_log);
++	if (page_size_log < BITS_PER_LONG)
++		return size_to_hstate(1UL << page_size_log);
++
++	return NULL;
+ }
+ 
+ static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
+@@ -626,4 +630,16 @@ static inline spinlock_t *huge_pte_lock(struct hstate *h,
+ 	return ptl;
+ }
+ 
++#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
++static inline bool hugetlb_pmd_shared(pte_t *pte)
++{
++	return page_count(virt_to_page(pte)) > 1;
++}
++#else
++static inline bool hugetlb_pmd_shared(pte_t *pte)
++{
++	return false;
++}
++#endif
++
+ #endif /* _LINUX_HUGETLB_H */
+diff --git a/include/linux/phy.h b/include/linux/phy.h
+index 42766e7179d38..86a3792c568c2 100644
+--- a/include/linux/phy.h
++++ b/include/linux/phy.h
+@@ -667,6 +667,10 @@ struct phy_driver {
+ #define PHY_ANY_ID "MATCH ANY PHY"
+ #define PHY_ANY_UID 0xffffffff
+ 
++#define PHY_ID_MATCH_EXACT(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 0)
++#define PHY_ID_MATCH_MODEL(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 4)
++#define PHY_ID_MATCH_VENDOR(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 10)
++
+ /* A Structure for boards to register fixups with the PHY Lib */
+ struct phy_fixup {
+ 	struct list_head list;
+diff --git a/include/net/sock.h b/include/net/sock.h
+index 30315a03b4abd..9eb656683281f 100644
+--- a/include/net/sock.h
++++ b/include/net/sock.h
+@@ -2134,6 +2134,19 @@ static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
+ 	sk_mem_charge(sk, skb->truesize);
+ }
+ 
++static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
++{
++	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
++	if (skb) {
++		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
++			skb_set_owner_r(skb, sk);
++			return skb;
++		}
++		__kfree_skb(skb);
++	}
++	return NULL;
++}
++
+ void sk_reset_timer(struct sock *sk, struct timer_list *timer,
+ 		    unsigned long expires);
+ 
+diff --git a/mm/mempolicy.c b/mm/mempolicy.c
+index e44e737e90a35..35088e830bff8 100644
+--- a/mm/mempolicy.c
++++ b/mm/mempolicy.c
+@@ -571,7 +571,8 @@ static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
+ 		goto unlock;
+ 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
+ 	if (flags & (MPOL_MF_MOVE_ALL) ||
+-	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
++	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
++	     !hugetlb_pmd_shared(pte)))
+ 		isolate_huge_page(page, qp->pagelist);
+ unlock:
+ 	spin_unlock(ptl);
+diff --git a/mm/swapfile.c b/mm/swapfile.c
+index 057e6907bf7b9..f3b2d694a155a 100644
+--- a/mm/swapfile.c
++++ b/mm/swapfile.c
+@@ -1008,6 +1008,7 @@ start_over:
+ 			goto check_out;
+ 		pr_debug("scan_swap_map of si %d failed to find offset\n",
+ 			si->type);
++		cond_resched();
+ 
+ 		spin_lock(&swap_avail_lock);
+ nextsi:
+diff --git a/net/core/filter.c b/net/core/filter.c
+index 32d0b8f14aabb..dea7132f38138 100644
+--- a/net/core/filter.c
++++ b/net/core/filter.c
+@@ -4235,7 +4235,6 @@ static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
+ 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
+ 	params->h_vlan_TCI = 0;
+ 	params->h_vlan_proto = 0;
+-	params->ifindex = dev->ifindex;
+ 
+ 	return 0;
+ }
+@@ -4333,6 +4332,7 @@ static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
+ 		params->ipv4_dst = nh->nh_gw;
+ 
+ 	params->rt_metric = res.fi->fib_priority;
++	params->ifindex = dev->ifindex;
+ 
+ 	/* xdp and cls_bpf programs are run in RCU-bh so
+ 	 * rcu_read_lock_bh is not needed here
+@@ -4447,6 +4447,7 @@ static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
+ 
+ 	dev = f6i->fib6_nh.nh_dev;
+ 	params->rt_metric = f6i->fib6_metric;
++	params->ifindex = dev->ifindex;
+ 
+ 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
+ 	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
+diff --git a/net/dccp/ipv6.c b/net/dccp/ipv6.c
+index 72803e1ea10a8..b2a26e41f932f 100644
+--- a/net/dccp/ipv6.c
++++ b/net/dccp/ipv6.c
+@@ -541,11 +541,9 @@ static struct sock *dccp_v6_request_recv_sock(const struct sock *sk,
+ 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), NULL);
+ 	/* Clone pktoptions received with SYN, if we own the req */
+ 	if (*own_req && ireq->pktopts) {
+-		newnp->pktoptions = skb_clone(ireq->pktopts, GFP_ATOMIC);
++		newnp->pktoptions = skb_clone_and_charge_r(ireq->pktopts, newsk);
+ 		consume_skb(ireq->pktopts);
+ 		ireq->pktopts = NULL;
+-		if (newnp->pktoptions)
+-			skb_set_owner_r(newnp->pktoptions, newsk);
+ 	}
+ 
+ 	return newsk;
+@@ -605,7 +603,7 @@ static int dccp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)
+ 					       --ANK (980728)
+ 	 */
+ 	if (np->rxopt.all)
+-		opt_skb = skb_clone(skb, GFP_ATOMIC);
++		opt_skb = skb_clone_and_charge_r(skb, sk);
+ 
+ 	if (sk->sk_state == DCCP_OPEN) { /* Fast path */
+ 		if (dccp_rcv_established(sk, skb, dccp_hdr(skb), skb->len))
+@@ -669,7 +667,6 @@ ipv6_pktoptions:
+ 			np->flow_label = ip6_flowlabel(ipv6_hdr(opt_skb));
+ 		if (ipv6_opt_accepted(sk, opt_skb,
+ 				      &DCCP_SKB_CB(opt_skb)->header.h6)) {
+-			skb_set_owner_r(opt_skb, sk);
+ 			memmove(IP6CB(opt_skb),
+ 				&DCCP_SKB_CB(opt_skb)->header.h6,
+ 				sizeof(struct inet6_skb_parm));
+diff --git a/net/ipv6/datagram.c b/net/ipv6/datagram.c
+index 727f958dd8695..45ece6a898bf3 100644
+--- a/net/ipv6/datagram.c
++++ b/net/ipv6/datagram.c
+@@ -54,7 +54,7 @@ static void ip6_datagram_flow_key_init(struct flowi6 *fl6, struct sock *sk)
+ 	fl6->flowi6_mark = sk->sk_mark;
+ 	fl6->fl6_dport = inet->inet_dport;
+ 	fl6->fl6_sport = inet->inet_sport;
+-	fl6->flowlabel = np->flow_label;
++	fl6->flowlabel = ip6_make_flowinfo(np->tclass, np->flow_label);
+ 	fl6->flowi6_uid = sk->sk_uid;
+ 
+ 	if (!fl6->flowi6_oif)
+diff --git a/net/ipv6/tcp_ipv6.c b/net/ipv6/tcp_ipv6.c
+index babf69b2403ba..f69c1b83403b7 100644
+--- a/net/ipv6/tcp_ipv6.c
++++ b/net/ipv6/tcp_ipv6.c
+@@ -257,6 +257,7 @@ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+ 	fl6.flowi6_proto = IPPROTO_TCP;
+ 	fl6.daddr = sk->sk_v6_daddr;
+ 	fl6.saddr = saddr ? *saddr : np->saddr;
++	fl6.flowlabel = ip6_make_flowinfo(np->tclass, np->flow_label);
+ 	fl6.flowi6_oif = sk->sk_bound_dev_if;
+ 	fl6.flowi6_mark = sk->sk_mark;
+ 	fl6.fl6_dport = usin->sin6_port;
+@@ -1268,14 +1269,11 @@ static struct sock *tcp_v6_syn_recv_sock(const struct sock *sk, struct sk_buff *
+ 
+ 		/* Clone pktoptions received with SYN, if we own the req */
+ 		if (ireq->pktopts) {
+-			newnp->pktoptions = skb_clone(ireq->pktopts,
+-						      sk_gfp_mask(sk, GFP_ATOMIC));
++			newnp->pktoptions = skb_clone_and_charge_r(ireq->pktopts, newsk);
+ 			consume_skb(ireq->pktopts);
+ 			ireq->pktopts = NULL;
+-			if (newnp->pktoptions) {
++			if (newnp->pktoptions)
+ 				tcp_v6_restore_cb(newnp->pktoptions);
+-				skb_set_owner_r(newnp->pktoptions, newsk);
+-			}
+ 		}
+ 	} else {
+ 		if (!req_unhash && found_dup_sk) {
+@@ -1343,7 +1341,7 @@ static int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)
+ 					       --ANK (980728)
+ 	 */
+ 	if (np->rxopt.all)
+-		opt_skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
++		opt_skb = skb_clone_and_charge_r(skb, sk);
+ 
+ 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
+ 		struct dst_entry *dst;
+@@ -1425,7 +1423,6 @@ ipv6_pktoptions:
+ 		if (np->repflow)
+ 			np->flow_label = ip6_flowlabel(ipv6_hdr(opt_skb));
+ 		if (ipv6_opt_accepted(sk, opt_skb, &TCP_SKB_CB(opt_skb)->header.h6)) {
+-			skb_set_owner_r(opt_skb, sk);
+ 			tcp_v6_restore_cb(opt_skb);
+ 			opt_skb = xchg(&np->pktoptions, opt_skb);
+ 		} else {
+diff --git a/net/mpls/af_mpls.c b/net/mpls/af_mpls.c
+index ea1745cb93edb..40b3e6a52f926 100644
+--- a/net/mpls/af_mpls.c
++++ b/net/mpls/af_mpls.c
+@@ -1375,6 +1375,7 @@ static int mpls_dev_sysctl_register(struct net_device *dev,
+ free:
+ 	kfree(table);
+ out:
++	mdev->sysctl = NULL;
+ 	return -ENOBUFS;
+ }
+ 
+@@ -1384,6 +1385,9 @@ static void mpls_dev_sysctl_unregister(struct net_device *dev,
+ 	struct net *net = dev_net(dev);
+ 	struct ctl_table *table;
+ 
++	if (!mdev->sysctl)
++		return;
++
+ 	table = mdev->sysctl->ctl_table_arg;
+ 	unregister_net_sysctl_table(mdev->sysctl);
+ 	kfree(table);
+diff --git a/net/netfilter/nft_tproxy.c b/net/netfilter/nft_tproxy.c
+index b97ab1198b03f..a0e30bf4a845c 100644
+--- a/net/netfilter/nft_tproxy.c
++++ b/net/netfilter/nft_tproxy.c
+@@ -289,6 +289,13 @@ static int nft_tproxy_dump(struct sk_buff *skb,
+ 	return 0;
+ }
+ 
++static int nft_tproxy_validate(const struct nft_ctx *ctx,
++			       const struct nft_expr *expr,
++			       const struct nft_data **data)
++{
++	return nft_chain_validate_hooks(ctx->chain, 1 << NF_INET_PRE_ROUTING);
++}
++
+ static struct nft_expr_type nft_tproxy_type;
+ static const struct nft_expr_ops nft_tproxy_ops = {
+ 	.type		= &nft_tproxy_type,
+@@ -296,6 +303,7 @@ static const struct nft_expr_ops nft_tproxy_ops = {
+ 	.eval		= nft_tproxy_eval,
+ 	.init		= nft_tproxy_init,
+ 	.dump		= nft_tproxy_dump,
++	.validate	= nft_tproxy_validate,
+ };
+ 
+ static struct nft_expr_type nft_tproxy_type __read_mostly = {
+diff --git a/net/netrom/af_netrom.c b/net/netrom/af_netrom.c
+index 43910e50752cb..a5d819fa7c899 100644
+--- a/net/netrom/af_netrom.c
++++ b/net/netrom/af_netrom.c
+@@ -403,6 +403,11 @@ static int nr_listen(struct socket *sock, int backlog)
+ 	struct sock *sk = sock->sk;
+ 
+ 	lock_sock(sk);
++	if (sock->state != SS_UNCONNECTED) {
++		release_sock(sk);
++		return -EINVAL;
++	}
++
+ 	if (sk->sk_state != TCP_LISTEN) {
+ 		memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
+ 		sk->sk_max_ack_backlog = backlog;
+diff --git a/net/openvswitch/datapath.c b/net/openvswitch/datapath.c
+index fbc5752472689..0551915519d9f 100644
+--- a/net/openvswitch/datapath.c
++++ b/net/openvswitch/datapath.c
+@@ -934,14 +934,14 @@ static int ovs_flow_cmd_new(struct sk_buff *skb, struct genl_info *info)
+ 	key = kzalloc(sizeof(*key), GFP_KERNEL);
+ 	if (!key) {
+ 		error = -ENOMEM;
+-		goto err_kfree_key;
++		goto err_kfree_flow;
+ 	}
+ 
+ 	ovs_match_init(&match, key, false, &mask);
+ 	error = ovs_nla_get_match(net, &match, a[OVS_FLOW_ATTR_KEY],
+ 				  a[OVS_FLOW_ATTR_MASK], log);
+ 	if (error)
+-		goto err_kfree_flow;
++		goto err_kfree_key;
+ 
+ 	ovs_flow_mask_key(&new_flow->key, key, true, &mask);
+ 
+@@ -949,14 +949,14 @@ static int ovs_flow_cmd_new(struct sk_buff *skb, struct genl_info *info)
+ 	error = ovs_nla_get_identifier(&new_flow->id, a[OVS_FLOW_ATTR_UFID],
+ 				       key, log);
+ 	if (error)
+-		goto err_kfree_flow;
++		goto err_kfree_key;
+ 
+ 	/* Validate actions. */
+ 	error = ovs_nla_copy_actions(net, a[OVS_FLOW_ATTR_ACTIONS],
+ 				     &new_flow->key, &acts, log);
+ 	if (error) {
+ 		OVS_NLERR(log, "Flow actions may not be safe on all matching packets.");
+-		goto err_kfree_flow;
++		goto err_kfree_key;
+ 	}
+ 
+ 	reply = ovs_flow_cmd_alloc_info(acts, &new_flow->id, info, false,
+@@ -1056,10 +1056,10 @@ err_unlock_ovs:
+ 	kfree_skb(reply);
+ err_kfree_acts:
+ 	ovs_nla_free_flow_actions(acts);
+-err_kfree_flow:
+-	ovs_flow_free(new_flow, false);
+ err_kfree_key:
+ 	kfree(key);
++err_kfree_flow:
++	ovs_flow_free(new_flow, false);
+ error:
+ 	return error;
+ }
+diff --git a/net/rds/message.c b/net/rds/message.c
+index 4b00b1152a5f0..309b54cc62ae3 100644
+--- a/net/rds/message.c
++++ b/net/rds/message.c
+@@ -104,9 +104,9 @@ static void rds_rm_zerocopy_callback(struct rds_sock *rs,
+ 	spin_lock_irqsave(&q->lock, flags);
+ 	head = &q->zcookie_head;
+ 	if (!list_empty(head)) {
+-		info = list_entry(head, struct rds_msg_zcopy_info,
+-				  rs_zcookie_next);
+-		if (info && rds_zcookie_add(info, cookie)) {
++		info = list_first_entry(head, struct rds_msg_zcopy_info,
++					rs_zcookie_next);
++		if (rds_zcookie_add(info, cookie)) {
+ 			spin_unlock_irqrestore(&q->lock, flags);
+ 			kfree(rds_info_from_znotifier(znotif));
+ 			/* caller invokes rds_wake_sk_sleep() */
+diff --git a/net/rose/af_rose.c b/net/rose/af_rose.c
+index 03a1ee221112e..4edd127bb8928 100644
+--- a/net/rose/af_rose.c
++++ b/net/rose/af_rose.c
+@@ -490,6 +490,12 @@ static int rose_listen(struct socket *sock, int backlog)
+ {
+ 	struct sock *sk = sock->sk;
+ 
++	lock_sock(sk);
++	if (sock->state != SS_UNCONNECTED) {
++		release_sock(sk);
++		return -EINVAL;
++	}
++
+ 	if (sk->sk_state != TCP_LISTEN) {
+ 		struct rose_sock *rose = rose_sk(sk);
+ 
+@@ -499,8 +505,10 @@ static int rose_listen(struct socket *sock, int backlog)
+ 		memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
+ 		sk->sk_max_ack_backlog = backlog;
+ 		sk->sk_state           = TCP_LISTEN;
++		release_sock(sk);
+ 		return 0;
+ 	}
++	release_sock(sk);
+ 
+ 	return -EOPNOTSUPP;
+ }
+diff --git a/net/x25/af_x25.c b/net/x25/af_x25.c
+index 77d8adb27ec76..9d0328bb30ca1 100644
+--- a/net/x25/af_x25.c
++++ b/net/x25/af_x25.c
+@@ -497,6 +497,12 @@ static int x25_listen(struct socket *sock, int backlog)
+ 	int rc = -EOPNOTSUPP;
+ 
+ 	lock_sock(sk);
++	if (sock->state != SS_UNCONNECTED) {
++		rc = -EINVAL;
++		release_sock(sk);
++		return rc;
++	}
++
+ 	if (sk->sk_state != TCP_LISTEN) {
+ 		memset(&x25_sk(sk)->dest_addr, 0, X25_ADDR_LEN);
+ 		sk->sk_max_ack_backlog = backlog;
+diff --git a/sound/pci/hda/patch_conexant.c b/sound/pci/hda/patch_conexant.c
+index b1a8ee8cf17e8..69f88d3abf50f 100644
+--- a/sound/pci/hda/patch_conexant.c
++++ b/sound/pci/hda/patch_conexant.c
+@@ -1106,6 +1106,7 @@ static const struct hda_device_id snd_hda_id_conexant[] = {
+ 	HDA_CODEC_ENTRY(0x14f11f86, "CX8070", patch_conexant_auto),
+ 	HDA_CODEC_ENTRY(0x14f12008, "CX8200", patch_conexant_auto),
+ 	HDA_CODEC_ENTRY(0x14f120d0, "CX11970", patch_conexant_auto),
++	HDA_CODEC_ENTRY(0x14f120d1, "SN6180", patch_conexant_auto),
+ 	HDA_CODEC_ENTRY(0x14f15045, "CX20549 (Venice)", patch_conexant_auto),
+ 	HDA_CODEC_ENTRY(0x14f15047, "CX20551 (Waikiki)", patch_conexant_auto),
+ 	HDA_CODEC_ENTRY(0x14f15051, "CX20561 (Hermosa)", patch_conexant_auto),
+diff --git a/sound/pci/hda/patch_realtek.c b/sound/pci/hda/patch_realtek.c
+index 9670db6ad1e1b..9cedb78bffe76 100644
+--- a/sound/pci/hda/patch_realtek.c
++++ b/sound/pci/hda/patch_realtek.c
+@@ -771,7 +771,7 @@ do_sku:
+ 			alc_setup_gpio(codec, 0x02);
+ 			break;
+ 		case 7:
+-			alc_setup_gpio(codec, 0x03);
++			alc_setup_gpio(codec, 0x04);
+ 			break;
+ 		case 5:
+ 		default:
+diff --git a/sound/pci/hda/patch_via.c b/sound/pci/hda/patch_via.c
+index 937155b1fae0f..9e2252eee626e 100644
+--- a/sound/pci/hda/patch_via.c
++++ b/sound/pci/hda/patch_via.c
+@@ -834,6 +834,9 @@ static int add_secret_dac_path(struct hda_codec *codec)
+ 		return 0;
+ 	nums = snd_hda_get_connections(codec, spec->gen.mixer_nid, conn,
+ 				       ARRAY_SIZE(conn) - 1);
++	if (nums < 0)
++		return nums;
++
+ 	for (i = 0; i < nums; i++) {
+ 		if (get_wcaps_type(get_wcaps(codec, conn[i])) == AC_WID_AUD_OUT)
+ 			return 0;
+diff --git a/sound/pci/lx6464es/lx_core.c b/sound/pci/lx6464es/lx_core.c
+index a80684bdc30d6..46f5362096710 100644
+--- a/sound/pci/lx6464es/lx_core.c
++++ b/sound/pci/lx6464es/lx_core.c
+@@ -508,12 +508,11 @@ int lx_buffer_ask(struct lx6464es *chip, u32 pipe, int is_capture,
+ 		dev_dbg(chip->card->dev,
+ 			"CMD_08_ASK_BUFFERS: needed %d, freed %d\n",
+ 			    *r_needed, *r_freed);
+-		for (i = 0; i < MAX_STREAM_BUFFER; ++i) {
+-			for (i = 0; i != chip->rmh.stat_len; ++i)
+-				dev_dbg(chip->card->dev,
+-					"  stat[%d]: %x, %x\n", i,
+-					    chip->rmh.stat[i],
+-					    chip->rmh.stat[i] & MASK_DATA_SIZE);
++		for (i = 0; i < MAX_STREAM_BUFFER && i < chip->rmh.stat_len;
++		     ++i) {
++			dev_dbg(chip->card->dev, "  stat[%d]: %x, %x\n", i,
++				chip->rmh.stat[i],
++				chip->rmh.stat[i] & MASK_DATA_SIZE);
+ 		}
+ 	}
+ 
+diff --git a/sound/soc/codecs/cs42l56.c b/sound/soc/codecs/cs42l56.c
+index deaad703a7dbf..a4826a7d0a98c 100644
+--- a/sound/soc/codecs/cs42l56.c
++++ b/sound/soc/codecs/cs42l56.c
+@@ -1204,18 +1204,12 @@ static int cs42l56_i2c_probe(struct i2c_client *i2c_client,
+ 	if (pdata) {
+ 		cs42l56->pdata = *pdata;
+ 	} else {
+-		pdata = devm_kzalloc(&i2c_client->dev, sizeof(*pdata),
+-				     GFP_KERNEL);
+-		if (!pdata)
+-			return -ENOMEM;
+-
+ 		if (i2c_client->dev.of_node) {
+ 			ret = cs42l56_handle_of_data(i2c_client,
+ 						     &cs42l56->pdata);
+ 			if (ret != 0)
+ 				return ret;
+ 		}
+-		cs42l56->pdata = *pdata;
+ 	}
+ 
+ 	if (cs42l56->pdata.gpio_nreset) {
+diff --git a/sound/synth/emux/emux_nrpn.c b/sound/synth/emux/emux_nrpn.c
+index 9729a15b6ae6a..f4aa2706aeb61 100644
+--- a/sound/synth/emux/emux_nrpn.c
++++ b/sound/synth/emux/emux_nrpn.c
+@@ -363,6 +363,9 @@ int
+ snd_emux_xg_control(struct snd_emux_port *port, struct snd_midi_channel *chan,
+ 		    int param)
+ {
++	if (param >= ARRAY_SIZE(chan->control))
++		return -EINVAL;
++
+ 	return send_converted_effect(xg_effects, ARRAY_SIZE(xg_effects),
+ 				     port, chan, param,
+ 				     chan->control[param],
+diff --git a/tools/testing/selftests/net/forwarding/lib.sh b/tools/testing/selftests/net/forwarding/lib.sh
+index ee03552b41167..7ead9d2aa6b8a 100644
+--- a/tools/testing/selftests/net/forwarding/lib.sh
++++ b/tools/testing/selftests/net/forwarding/lib.sh
+@@ -519,14 +519,14 @@ sysctl_set()
+ 	local value=$1; shift
+ 
+ 	SYSCTL_ORIG[$key]=$(sysctl -n $key)
+-	sysctl -qw $key=$value
++	sysctl -qw $key="$value"
+ }
+ 
+ sysctl_restore()
+ {
+ 	local key=$1; shift
+ 
+-	sysctl -qw $key=${SYSCTL_ORIG["$key"]}
++	sysctl -qw $key="${SYSCTL_ORIG[$key]}"
+ }
+ 
+ forwarding_enable()
+diff --git a/tools/virtio/linux/bug.h b/tools/virtio/linux/bug.h
+index b14c2c3b6b857..74aef964f5099 100644
+--- a/tools/virtio/linux/bug.h
++++ b/tools/virtio/linux/bug.h
+@@ -1,11 +1,9 @@
+ /* SPDX-License-Identifier: GPL-2.0 */
+-#ifndef BUG_H
+-#define BUG_H
++#ifndef _LINUX_BUG_H
++#define _LINUX_BUG_H
+ 
+ #define BUG_ON(__BUG_ON_cond) assert(!(__BUG_ON_cond))
+ 
+-#define BUILD_BUG_ON(x)
+-
+ #define BUG() abort()
+ 
+-#endif /* BUG_H */
++#endif /* _LINUX_BUG_H */
+diff --git a/tools/virtio/linux/build_bug.h b/tools/virtio/linux/build_bug.h
+new file mode 100644
+index 0000000000000..cdbb75e28a604
+--- /dev/null
++++ b/tools/virtio/linux/build_bug.h
+@@ -0,0 +1,7 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef _LINUX_BUILD_BUG_H
++#define _LINUX_BUILD_BUG_H
++
++#define BUILD_BUG_ON(x)
++
++#endif	/* _LINUX_BUILD_BUG_H */
+diff --git a/tools/virtio/linux/cpumask.h b/tools/virtio/linux/cpumask.h
+new file mode 100644
+index 0000000000000..307da69d6b26c
+--- /dev/null
++++ b/tools/virtio/linux/cpumask.h
+@@ -0,0 +1,7 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef _LINUX_CPUMASK_H
++#define _LINUX_CPUMASK_H
++
++#include <linux/kernel.h>
++
++#endif /* _LINUX_CPUMASK_H */
+diff --git a/tools/virtio/linux/gfp.h b/tools/virtio/linux/gfp.h
+new file mode 100644
+index 0000000000000..43d146f236f14
+--- /dev/null
++++ b/tools/virtio/linux/gfp.h
+@@ -0,0 +1,7 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef __LINUX_GFP_H
++#define __LINUX_GFP_H
++
++#include <linux/topology.h>
++
++#endif
+diff --git a/tools/virtio/linux/kernel.h b/tools/virtio/linux/kernel.h
+index 7ef45a4a3cba7..0dc38fe2a4f16 100644
+--- a/tools/virtio/linux/kernel.h
++++ b/tools/virtio/linux/kernel.h
+@@ -10,6 +10,7 @@
+ #include <stdarg.h>
+ 
+ #include <linux/compiler.h>
++#include <linux/log2.h>
+ #include <linux/types.h>
+ #include <linux/printk.h>
+ #include <linux/bug.h>
+diff --git a/tools/virtio/linux/kmsan.h b/tools/virtio/linux/kmsan.h
+new file mode 100644
+index 0000000000000..272b5aa285d5a
+--- /dev/null
++++ b/tools/virtio/linux/kmsan.h
+@@ -0,0 +1,12 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef _LINUX_KMSAN_H
++#define _LINUX_KMSAN_H
++
++#include <linux/gfp.h>
++
++inline void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
++			     enum dma_data_direction dir)
++{
++}
++
++#endif /* _LINUX_KMSAN_H */
+diff --git a/tools/virtio/linux/scatterlist.h b/tools/virtio/linux/scatterlist.h
+index 369ee308b6686..74d9e1825748e 100644
+--- a/tools/virtio/linux/scatterlist.h
++++ b/tools/virtio/linux/scatterlist.h
+@@ -2,6 +2,7 @@
+ #ifndef SCATTERLIST_H
+ #define SCATTERLIST_H
+ #include <linux/kernel.h>
++#include <linux/bug.h>
+ 
+ struct scatterlist {
+ 	unsigned long	page_link;
+diff --git a/tools/virtio/linux/topology.h b/tools/virtio/linux/topology.h
+new file mode 100644
+index 0000000000000..910794afb993a
+--- /dev/null
++++ b/tools/virtio/linux/topology.h
+@@ -0,0 +1,7 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef _LINUX_TOPOLOGY_H
++#define _LINUX_TOPOLOGY_H
++
++#include <linux/cpumask.h>
++
++#endif /* _LINUX_TOPOLOGY_H */


             reply	other threads:[~2023-02-22 14:52 UTC|newest]

Thread overview: 332+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2023-02-22 14:51 Alice Ferrazzi [this message]
  -- strict thread matches above, loose matches on Subject: below --
2024-04-18  3:06 [gentoo-commits] proj/linux-patches:4.19 commit in: / Alice Ferrazzi
2023-09-02  9:59 Mike Pagano
2023-08-30 15:00 Mike Pagano
2023-08-16 16:59 Mike Pagano
2023-08-11 11:58 Mike Pagano
2023-08-08 18:43 Mike Pagano
2023-07-24 20:30 Mike Pagano
2023-06-28 10:29 Mike Pagano
2023-06-21 14:55 Alice Ferrazzi
2023-06-14 10:21 Mike Pagano
2023-06-09 11:32 Mike Pagano
2023-05-30 12:57 Mike Pagano
2023-05-17 11:14 Mike Pagano
2023-05-17 11:01 Mike Pagano
2023-05-10 17:59 Mike Pagano
2023-04-26  9:35 Alice Ferrazzi
2023-04-20 11:17 Alice Ferrazzi
2023-04-05 11:41 Mike Pagano
2023-03-22 14:16 Alice Ferrazzi
2023-03-17 10:46 Mike Pagano
2023-03-13 11:35 Alice Ferrazzi
2023-03-11 16:01 Mike Pagano
2023-03-03 12:31 Mike Pagano
2023-02-25 11:41 Mike Pagano
2023-02-24  3:19 Alice Ferrazzi
2023-02-24  3:15 Alice Ferrazzi
2023-02-06 12:49 Mike Pagano
2023-01-24  7:16 Alice Ferrazzi
2023-01-18 11:11 Mike Pagano
2022-12-14 12:15 Mike Pagano
2022-12-08 12:14 Alice Ferrazzi
2022-11-25 17:04 Mike Pagano
2022-11-23  9:39 Alice Ferrazzi
2022-11-10 17:58 Mike Pagano
2022-11-03 15:11 Mike Pagano
2022-11-01 19:48 Mike Pagano
2022-10-26 11:41 Mike Pagano
2022-10-05 11:59 Mike Pagano
2022-09-28  9:18 Mike Pagano
2022-09-20 12:03 Mike Pagano
2022-09-15 11:09 Mike Pagano
2022-09-05 12:06 Mike Pagano
2022-08-25 10:35 Mike Pagano
2022-08-11 12:36 Mike Pagano
2022-07-29 15:28 Mike Pagano
2022-07-21 20:12 Mike Pagano
2022-07-12 16:01 Mike Pagano
2022-07-07 16:18 Mike Pagano
2022-07-02 16:07 Mike Pagano
2022-06-25 10:22 Mike Pagano
2022-06-16 11:40 Mike Pagano
2022-06-14 16:02 Mike Pagano
2022-06-06 11:05 Mike Pagano
2022-05-27 12:24 Mike Pagano
2022-05-25 11:55 Mike Pagano
2022-05-18  9:50 Mike Pagano
2022-05-15 22:12 Mike Pagano
2022-05-12 11:30 Mike Pagano
2022-05-01 17:04 Mike Pagano
2022-04-27 12:03 Mike Pagano
2022-04-20 12:09 Mike Pagano
2022-04-15 13:11 Mike Pagano
2022-04-12 19:24 Mike Pagano
2022-03-28 10:59 Mike Pagano
2022-03-23 11:57 Mike Pagano
2022-03-16 13:27 Mike Pagano
2022-03-11 10:56 Mike Pagano
2022-03-08 18:30 Mike Pagano
2022-03-02 13:08 Mike Pagano
2022-02-26 21:14 Mike Pagano
2022-02-23 12:39 Mike Pagano
2022-02-16 12:47 Mike Pagano
2022-02-11 12:53 Mike Pagano
2022-02-11 12:46 Mike Pagano
2022-02-11 12:45 Mike Pagano
2022-02-11 12:37 Mike Pagano
2022-02-08 17:56 Mike Pagano
2022-01-29 17:45 Mike Pagano
2022-01-27 11:39 Mike Pagano
2022-01-11 13:14 Mike Pagano
2022-01-05 12:55 Mike Pagano
2021-12-29 13:11 Mike Pagano
2021-12-22 14:07 Mike Pagano
2021-12-14 10:36 Mike Pagano
2021-12-08 12:55 Mike Pagano
2021-12-01 12:51 Mike Pagano
2021-11-26 11:59 Mike Pagano
2021-11-12 14:16 Mike Pagano
2021-11-06 13:26 Mike Pagano
2021-11-02 19:32 Mike Pagano
2021-10-27 11:59 Mike Pagano
2021-10-20 13:26 Mike Pagano
2021-10-17 13:12 Mike Pagano
2021-10-13 15:00 Alice Ferrazzi
2021-10-09 21:33 Mike Pagano
2021-10-06 14:06 Mike Pagano
2021-09-26 14:13 Mike Pagano
2021-09-22 11:40 Mike Pagano
2021-09-20 22:05 Mike Pagano
2021-09-03 11:22 Mike Pagano
2021-09-03 10:08 Alice Ferrazzi
2021-08-26 14:06 Mike Pagano
2021-08-25 22:45 Mike Pagano
2021-08-25 20:41 Mike Pagano
2021-08-15 20:07 Mike Pagano
2021-08-12 11:51 Mike Pagano
2021-08-08 13:39 Mike Pagano
2021-08-04 11:54 Mike Pagano
2021-08-03 12:26 Mike Pagano
2021-07-31 10:34 Alice Ferrazzi
2021-07-28 12:37 Mike Pagano
2021-07-20 15:35 Alice Ferrazzi
2021-07-13 12:38 Mike Pagano
2021-07-11 14:45 Mike Pagano
2021-06-30 14:25 Mike Pagano
2021-06-16 12:22 Mike Pagano
2021-06-10 11:46 Mike Pagano
2021-06-03 10:32 Alice Ferrazzi
2021-05-26 12:05 Mike Pagano
2021-05-22 10:03 Mike Pagano
2021-05-07 11:40 Alice Ferrazzi
2021-04-30 19:02 Mike Pagano
2021-04-28 18:31 Mike Pagano
2021-04-28 11:44 Alice Ferrazzi
2021-04-16 11:15 Alice Ferrazzi
2021-04-14 11:22 Alice Ferrazzi
2021-04-10 13:24 Mike Pagano
2021-04-07 12:21 Mike Pagano
2021-03-30 14:17 Mike Pagano
2021-03-24 12:08 Mike Pagano
2021-03-22 15:50 Mike Pagano
2021-03-20 14:26 Mike Pagano
2021-03-17 16:21 Mike Pagano
2021-03-11 14:05 Mike Pagano
2021-03-07 15:15 Mike Pagano
2021-03-04 12:08 Mike Pagano
2021-02-23 14:31 Alice Ferrazzi
2021-02-13 15:28 Alice Ferrazzi
2021-02-10 10:03 Alice Ferrazzi
2021-02-07 14:40 Alice Ferrazzi
2021-02-03 23:43 Mike Pagano
2021-01-30 13:34 Alice Ferrazzi
2021-01-27 11:15 Mike Pagano
2021-01-23 16:36 Mike Pagano
2021-01-19 20:34 Mike Pagano
2021-01-17 16:20 Mike Pagano
2021-01-12 20:06 Mike Pagano
2021-01-09 12:57 Mike Pagano
2021-01-06 14:15 Mike Pagano
2020-12-30 12:52 Mike Pagano
2020-12-11 12:56 Mike Pagano
2020-12-08 12:06 Mike Pagano
2020-12-02 12:49 Mike Pagano
2020-11-24 14:40 Mike Pagano
2020-11-22 19:26 Mike Pagano
2020-11-18 19:56 Mike Pagano
2020-11-11 15:43 Mike Pagano
2020-11-10 13:56 Mike Pagano
2020-11-05 12:35 Mike Pagano
2020-11-01 20:29 Mike Pagano
2020-10-29 11:18 Mike Pagano
2020-10-17 10:17 Mike Pagano
2020-10-14 20:36 Mike Pagano
2020-10-07 12:50 Mike Pagano
2020-10-01 12:45 Mike Pagano
2020-09-26 22:07 Mike Pagano
2020-09-26 22:00 Mike Pagano
2020-09-24 15:58 Mike Pagano
2020-09-23 12:07 Mike Pagano
2020-09-17 15:01 Mike Pagano
2020-09-17 14:55 Mike Pagano
2020-09-12 17:59 Mike Pagano
2020-09-09 17:59 Mike Pagano
2020-09-03 11:37 Mike Pagano
2020-08-26 11:15 Mike Pagano
2020-08-21 10:49 Alice Ferrazzi
2020-08-19  9:36 Alice Ferrazzi
2020-08-12 23:36 Alice Ferrazzi
2020-08-07 19:16 Mike Pagano
2020-08-05 14:51 Thomas Deutschmann
2020-07-31 18:00 Mike Pagano
2020-07-29 12:33 Mike Pagano
2020-07-22 12:42 Mike Pagano
2020-07-16 11:17 Mike Pagano
2020-07-09 12:12 Mike Pagano
2020-07-01 12:14 Mike Pagano
2020-06-29 17:41 Mike Pagano
2020-06-25 15:07 Mike Pagano
2020-06-22 14:47 Mike Pagano
2020-06-10 21:27 Mike Pagano
2020-06-07 21:52 Mike Pagano
2020-06-03 11:41 Mike Pagano
2020-05-27 16:25 Mike Pagano
2020-05-20 11:30 Mike Pagano
2020-05-20 11:27 Mike Pagano
2020-05-14 11:30 Mike Pagano
2020-05-13 12:33 Mike Pagano
2020-05-11 22:50 Mike Pagano
2020-05-09 22:20 Mike Pagano
2020-05-06 11:46 Mike Pagano
2020-05-02 19:24 Mike Pagano
2020-04-29 17:57 Mike Pagano
2020-04-23 11:44 Mike Pagano
2020-04-21 11:15 Mike Pagano
2020-04-17 11:45 Mike Pagano
2020-04-15 17:09 Mike Pagano
2020-04-13 11:34 Mike Pagano
2020-04-02 15:24 Mike Pagano
2020-03-25 14:58 Mike Pagano
2020-03-20 11:57 Mike Pagano
2020-03-18 14:21 Mike Pagano
2020-03-16 12:23 Mike Pagano
2020-03-11 17:20 Mike Pagano
2020-03-05 16:23 Mike Pagano
2020-02-28 16:38 Mike Pagano
2020-02-24 11:06 Mike Pagano
2020-02-19 23:45 Mike Pagano
2020-02-14 23:52 Mike Pagano
2020-02-11 16:20 Mike Pagano
2020-02-05 17:05 Mike Pagano
2020-02-01 10:37 Mike Pagano
2020-02-01 10:30 Mike Pagano
2020-01-29 16:16 Mike Pagano
2020-01-27 14:25 Mike Pagano
2020-01-23 11:07 Mike Pagano
2020-01-17 19:56 Mike Pagano
2020-01-14 22:30 Mike Pagano
2020-01-12 15:00 Mike Pagano
2020-01-09 11:15 Mike Pagano
2020-01-04 19:50 Mike Pagano
2019-12-31 17:46 Mike Pagano
2019-12-21 15:03 Mike Pagano
2019-12-17 21:56 Mike Pagano
2019-12-13 12:35 Mike Pagano
2019-12-05 12:03 Alice Ferrazzi
2019-12-01 14:06 Thomas Deutschmann
2019-11-24 15:44 Mike Pagano
2019-11-20 19:36 Mike Pagano
2019-11-12 21:00 Mike Pagano
2019-11-10 16:20 Mike Pagano
2019-11-06 14:26 Mike Pagano
2019-10-29 12:04 Mike Pagano
2019-10-17 22:27 Mike Pagano
2019-10-11 17:04 Mike Pagano
2019-10-07 17:42 Mike Pagano
2019-10-05 11:42 Mike Pagano
2019-10-01 10:10 Mike Pagano
2019-09-21 17:11 Mike Pagano
2019-09-19 12:34 Mike Pagano
2019-09-19 10:04 Mike Pagano
2019-09-16 12:26 Mike Pagano
2019-09-10 11:12 Mike Pagano
2019-09-06 17:25 Mike Pagano
2019-08-29 14:15 Mike Pagano
2019-08-25 17:37 Mike Pagano
2019-08-23 22:18 Mike Pagano
2019-08-16 12:26 Mike Pagano
2019-08-16 12:13 Mike Pagano
2019-08-09 17:45 Mike Pagano
2019-08-06 19:19 Mike Pagano
2019-08-04 16:15 Mike Pagano
2019-07-31 15:09 Mike Pagano
2019-07-31 10:22 Mike Pagano
2019-07-28 16:27 Mike Pagano
2019-07-26 11:35 Mike Pagano
2019-07-21 14:41 Mike Pagano
2019-07-14 15:44 Mike Pagano
2019-07-10 11:05 Mike Pagano
2019-07-03 11:34 Mike Pagano
2019-06-25 10:53 Mike Pagano
2019-06-22 19:06 Mike Pagano
2019-06-19 17:17 Thomas Deutschmann
2019-06-17 19:22 Mike Pagano
2019-06-15 15:07 Mike Pagano
2019-06-11 12:42 Mike Pagano
2019-06-10 19:43 Mike Pagano
2019-06-09 16:19 Mike Pagano
2019-06-04 11:11 Mike Pagano
2019-05-31 15:02 Mike Pagano
2019-05-26 17:10 Mike Pagano
2019-05-22 11:02 Mike Pagano
2019-05-16 23:03 Mike Pagano
2019-05-14 21:00 Mike Pagano
2019-05-10 19:40 Mike Pagano
2019-05-08 10:06 Mike Pagano
2019-05-05 13:42 Mike Pagano
2019-05-04 18:28 Mike Pagano
2019-05-02 10:13 Mike Pagano
2019-04-27 17:36 Mike Pagano
2019-04-20 11:09 Mike Pagano
2019-04-19 19:51 Mike Pagano
2019-04-05 21:46 Mike Pagano
2019-04-03 10:59 Mike Pagano
2019-03-27 10:22 Mike Pagano
2019-03-23 20:23 Mike Pagano
2019-03-19 16:58 Mike Pagano
2019-03-13 22:08 Mike Pagano
2019-03-10 14:15 Mike Pagano
2019-03-06 19:06 Mike Pagano
2019-03-05 18:04 Mike Pagano
2019-02-27 11:23 Mike Pagano
2019-02-23 11:35 Mike Pagano
2019-02-23  0:46 Mike Pagano
2019-02-20 11:19 Mike Pagano
2019-02-16  0:42 Mike Pagano
2019-02-15 12:39 Mike Pagano
2019-02-12 20:53 Mike Pagano
2019-02-06 17:08 Mike Pagano
2019-01-31 11:28 Mike Pagano
2019-01-26 15:09 Mike Pagano
2019-01-22 23:06 Mike Pagano
2019-01-16 23:32 Mike Pagano
2019-01-13 19:29 Mike Pagano
2019-01-09 17:54 Mike Pagano
2018-12-29 18:55 Mike Pagano
2018-12-29  1:08 Mike Pagano
2018-12-21 14:58 Mike Pagano
2018-12-19 19:09 Mike Pagano
2018-12-17 11:42 Mike Pagano
2018-12-13 11:40 Mike Pagano
2018-12-08 13:17 Mike Pagano
2018-12-08 13:17 Mike Pagano
2018-12-05 20:16 Mike Pagano
2018-12-01 15:08 Mike Pagano
2018-11-27 16:16 Mike Pagano
2018-11-23 12:42 Mike Pagano
2018-11-21 12:30 Mike Pagano
2018-11-14  0:47 Mike Pagano
2018-11-14  0:47 Mike Pagano
2018-11-13 20:44 Mike Pagano
2018-11-04 16:22 Alice Ferrazzi

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=1677077454.dca312933d750be394361d9d95540dbd023aefd3.alicef@gentoo \
    --to=alicef@gentoo.org \
    --cc=gentoo-commits@lists.gentoo.org \
    --cc=gentoo-dev@lists.gentoo.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox